The multifunctional process of resonance scattering and generation of oscillations by nonlinear layered structures

Angermann, Lutz GND; Yatsyk, Vasyl V.

The paper focuses on the development of a mathematical model, an effective algorithm and a self-consistent numerical analysis of the multifunctional properties of resonant scattering and generation of oscillations by nonlinear, cubically polarizable layered structures. The multifunctionality of such layered media is caused by the nonlinear mechanism between interacting oscillations—the incident oscillations (exciting the nonlinear layer from the upper and lower half-spaces) as well as the scattered and generated oscillations at the frequencies of excitation/ scattering and generation. The study of the resonance properties of scattering and generation of oscillations by a nonlinear structure with a controllable permittivity in dependence on the variation of the intensities of the components of the exciting wave package is of particular interest. In the present paper, we extend our former results, and furthermore we analyze the realizability of multifunctional properties of nonlinear electromagnetic objects with a controllable permittivity. The results of our investigations (i) demonstrate the possibility to control the scattering and generation properties of the nonlinear structure via the intensity of the incident field, (ii) indicate the possibility of increasing the multifunctionality of electronic devices, of designing frequency multipliers, and other electrodynamic devices containing nonlinear dielectrics with controllable permittivity.

Vorschau

Zitieren

Zitierform:

Angermann, Lutz / Yatsyk, Vasyl V.: The multifunctional process of resonance scattering and generation of oscillations by nonlinear layered structures. 2016.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Nutzung und Vervielfältigung:

Export