Surface modification of battery electrodes via electroless deposition with improved performance for Na-ion batteries

Lahiri, Abhishek; Olschewski, Mark GND; Gustus, René; Borisenko, Natalia GND; Endres, Frank GND

Sodium-ion batteries (SIBs) are emerging as potential stationary energy storage devices due to the abundance and low cost of sodium. A simple and energy efficient strategy to develop electrodes for SIBs with a high charge/discharge rate is highly desirable. Here we demonstrate that by surface modification of Ge, using electroless deposition in SbCl3/ionic liquids, the stability and performance of the anode can be improved. This is due to the formation of GexSb1−x at the surface leading to better diffusion of Na, and the formation of a stable twin organic and inorganic SEI which protects the electrode. By judicious control of the surface modification, an improvement in the capacity to between 50% and 300% has been achieved at high current densities (0.83–8.4 A g−1) in an ionic liquid electrolyte NaFSI-[Py1,4]FSI. The results clearly demonstrate that an electroless deposition based surface modification strategy in ionic liquids offers exciting opportunities in developing superior energy storage devices.

Vorschau

Zitieren

Zitierform:

Lahiri, Abhishek / Olschewski, Mark / Gustus, René / et al: Surface modification of battery electrodes via electroless deposition with improved performance for Na-ion batteries. 2016.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Nutzung und Vervielfältigung:

Export