On Convergence of the Exponentially Fitted Finite Volume Method With an Anisotropic Mesh Refinement for a Singularly Perturbed Convection-diffusion Equation

Wang, Song GND; Angermann, Lutz GND

This paper presents a convergence analysis for the exponentially fitted finite volume method in two dimensions applied to a linear singularly perturbed convection-diffusion equation with exponential boundary layers. The method is formulated as a nonconforming Petrov-Galerkin finite element method with an exponentially fitted trial space and a piecewise constant test space. The corresponding bilinear form is proved to be coercive with respect to a discrete energy norm. Numerical results are presented to verify the theoretical rates of convergence.

Vorschau

Zitieren

Zitierform:

Wang, Song / Angermann, Lutz: On Convergence of the Exponentially Fitted Finite Volume Method With an Anisotropic Mesh Refinement for a Singularly Perturbed Convection-diffusion Equation.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Nutzung und Vervielfältigung:

Export