Normalized boundary triplet for a sum of tensor products of operators

Boitsev, A. A.; Brasche, Johannes F. GND; Malamud, M. M.; Neidhardt, Hagen GND; Popov, I. Yu.

The boundary triplet approach is applied to the construction of self-adjoint extensions of the operator having the form S := A ⊗ IT + IH ⊗ T where the operator A is symmetric and the operator T is self-adjoint. A normalized boundary triplet is constructed, and formulas for the γ-field and the Weyl function are obtained. Applications to Schrödinger and Dirac operators in 1D are given.

Vorschau

Zitieren

Zitierform:

Boitsev, A. / Brasche, Johannes / Malamud, M. / et al: Normalized boundary triplet for a sum of tensor products of operators. 2017.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Nutzung und Vervielfältigung:
Alle Rechte vorbehalten

Export