Genesis of BIF-hosted iron ore deposits in the Carajás mineral province, Brazil : constraints from in-situ Fe isotope analysis and whole-rock geochemistry
The Carajás mineral province, located in northern Brazil, hosts the largest high-grade iron ore resource in the world (18 Gt @ 66 wt.% Fe). The iron ore deposits formed from banded iron formation (BIF) units of the Neoarchean Carajás Formation, and are situated on the northern (Serra Norte) and southern (Serra Sul) limbs of the WNW-striking Carajás fold. Unweathered BIF samples from two Serra Norte ore bodies (N7, N8) and an ore body from the Serra Sul (S11D), have a simple mineralogy, consisting of alternating magnetite and quartz-rich bands. This mineral assemblage is characteristic for oxide facies BIF. Sedimentation of the BIF units occurred in distal basin parts, as shown by low abundances of Al2O3, TiO2 and high field strength elements (HFSE). Seawater-like rare-earth element (REE) distribution patterns indicate a formation by marine chemical sedimentation. The absence of true Ce anomalies shows that suboxic to anoxic conditions were prevalent in the Carajás basin, at the time of BIF deposition. Unusually strong positive Eu anomalies were detected in all BIF samples. These anomalies record a high hydrothermal flux to the Carajás basin. The strictly positive Fe isotope composition of magnetite in BIF samples indicates derivation from Archean seawater by partial oxidation of aqueous Fe(II). The low variability between the Fe isotope composition of iron-rich bands at the 10-cm scale demonstrates that BIF formation took place with remarkable consistency over several thousand years. Rayleigh modeling of Fe isotope fractionation during Fe(II) oxidation suggests that BIF sedimentation occurred at low ocean temperatures. The iron ore deposits consist mainly of friable hematite–goethite ore (so-called "soft ore"). Martite, i.e. hematite pseudomorphic after magnetite, is the main constituent of soft ore. The homogenous Fe isotope composition of martite in individual samples strongly resembles the invariable Fe isotope composition of magnetite, which suggests that iron remained immobile during geological history. This argues against proposed models of hypogene iron ore formation, since hydrothermal overprint would have introduced a large scatter in the Fe isotope composition of magnetite and martite, combined with a considerable shift towards a more positive Fe isotope composition. Microplaty hematite is a minor constituent of soft ore and often occurs as crystals nucleating on martite. This observation and the homogenous Fe isotope composition of microplaty hematite and martite, detected in samples of BIF and soft ore, indicate that microplaty hematite formed by recrystallization of pre-existing martite. Pressure and temperature conditions during weathering should not allow this degree of recrystallization. Thus, martitization and microplaty hematite formation must have occurred earlier, possibly during retrograde metamorphism, when the prevalent P-T conditions shifted the stability of magnetite towards hematite. By contrast, goethite, formed in an open system during subrecent/recent weathering, has a more variable Fe isotope composition. Consequently, martitization and microplaty hematite formation must have taken place during retrograde metamorphism, while leaching of silica and residual high-grade iron ore formation occurred over the last 70 Ma by intense weathering under essentially bulk iron-immobile conditions.
In der Carajás Lagerstättenprovinz in Nordbrasilien treten die weltweit größten Ressourcen an high-grade Eisenerz auf (18 Gt @ 66 wt.% Fe). Die Eisenerzlagerstätten bildeten sich aus Bändereisenerz (BIF) der neoarchaischen Carajás Formation. Die Lagerstätten befinden sich auf den nördlichen (Serra Norte) und südlichen (Serra Sul) Faltenschenkeln der WNW-streichenden Carajás Falte. Unverwitterte BIF-Proben aus zwei Erzkörpern der Serra Norte (N7, N8) und eines Erzkörpers der Serra Sul (S11D), weisen eine einfache Mineralogie auf, welche aus wechselgelagerten Magnetit- und Quarz-reichen Bändern besteht. Diese Mineralzusammensetzung ist charakteristisch für Oxidfazies BIF. Niedrige Gehalte an Al2O3, TiO2 und "high field strength elements" (HFSE) deuten an, dass die BIF-Ablagerung in distalen Beckenbereichen erfolgte. Meerwasserähnliche Verteilungsmuster von Seltenen Erdmetallen (REE), weisen auf eine Bildung durch marine chemische Sedimentation hin. Das Fehlen echter Ce Anomalien zeigt an, dass zum Zeitpunkt der BIF-Ablagerung suboxische bis anoxische Bedingungen im Carajás Becken vorherrschten. Ungewöhnlich starke positive Eu Anomalien wurden in allen BIF-Proben nachgewiesen. Diese Anomalien dokumentieren einen hohen hydrothermalen Flux in das Carajás Becken. Die ausschließlich positive Fe Isotopenzusammensetzung von Magnetit in BIF-Proben deutet auf eine Bildung aus archaischem Meerwasser durch partielle Oxidation von gelöstem Fe(II) hin. Die geringe Variation zwischen der Fe Isotopenzusammensetzung der eisenreichen Bänder im 10-cm Maßstab zeigt, dass BIF-Ablagerung bemerkenswert gleichmäßig über mehrere tausend Jahre ablief. Rayleigh-Modellierung der Fe Isotopenfraktionierung während der Fe(II) Oxidation legt nahe, dass die Bildung der BIFs bei relativ niedrigen Ozeantemperaturen erfolgte. Die Eisenerzlagerstätten bestehen hauptsächlich aus pulverigem Hämatit-Goethit Erz (sogenanntes "Soft ore"). Martit, eine Pseudomorphose von Hämatit nach Magnetit, bildet den Hauptbestandteil des Soft ore. Die homogene Fe Isotopenzusammensetzung des Martits in einzelnen Proben ähnelt der gleichartigen Fe Isotopenzusammensetzung von Magnetit, was nahelegt, dass sich Eisen über geologische Zeiträume hinweg immobil verhielt. Dies spricht gegen Modelle einer hypogenen Eisenerzbildung, da hydrothermale Überprägung eine große Streuung in die Fe Isotopenzusammensetzung von Magnetit und Martit eingebracht hätte, in Kombination mit einer beträchtlichen Verschiebung hin zu einer positiveren Fe-Isotopenzusammensetzung. "Microplaty hematite" ist ein geringer Bestandteil des Soft ores und tritt häufig in Form von Kristallen auf, welche auf Martit wachsen. Sowohl diese Beobachtung, als auch die festgestellte homogene Fe-Isotopenzusammensetzung von Microplaty hematite und Martit in BIF und Soft ore Proben deuten darauf hin, dass die Bildung von Microplaty hematite durch Rekristallisation bereits vorhandenen Martits erfolgte. Da die Druck- und Temperaturbedingungen während der Verwitterung nicht einen solchen Grad der Rekristallisation ermöglichen sollten, muss Martitisierung und die Bildung von Microplaty hematite bereits früher erfolgt sein. Möglicherweise während retrograden Metamorphismus, als vorherrschende P-T Bedingungen die Stabilität des Magnetits zu Gunsten des Hämatits verschoben. Im Gegensatz hierzu zeigt Goethit, dessen Bildung in einem offenen System während subrezenter/rezenter Verwitterung erfolgte, eine deutlich unregelmäßigere Fe Isotopenzusammensetzung. Folglich muss die Martitisierung und Bildung von Microplaty hematite bereits während der retrograden Metamorphose erfolgt sein. Die Auslaugung von Quarz und die residuale Eisenerzbildung erfolgte hingegen in den vergangenen 70 Ma durch intensive Verwitterung unter Bedingungen in denen sich Eisen im Wesentlichen immobil verhielt.
Preview
Cite
Access Statistic
