Beneficial use of hyperbaric process conditions for welding of aluminium and copper alloys

The joining of components with as few weld layers as possible is an important aspect of weld seam design due to the resulting reduced manufacturing effort and reduced influence of thermal cycles on the base material as well as reduced distortion. For materials with good thermal conductivity, this is not easily possible. The energy density of the arc has been found to be the core parameter for determining the penetration. In the present work, it is shown how the use of a hyperbaric process environment (2 to 16 bar) allows an increase of the energy density of the arc and thus an increase of the penetration depth for selected aluminium and copper alloys. Furthermore, the effects of this novel approach on weld metal metallurgy are presented. It is shown that the penetration depth can be doubled by increasing the ambient pressure. Furthermore, a statistical model for the prediction of the penetration depth depending on the welding parameters will be presented.


Citation style:
Could not load citation form.

Access Statistic

Last 12 Month:


Use and reproduction: