Metamorphic development of the olfactory system in the red flour beetle (Tribolium castaneum, HERBST)
Background: Insects depend on their olfactory sense as a vital system. Olfactory cues are processed by a rather complex system and translated into various types of behavior. In holometabolous insects like the red flour beetle Tribolium castaneum, the nervous system typically undergoes considerable remodeling during metamorphosis. This process includes the integration of new neurons, as well as remodeling and elimination of larval neurons. Results: We find that the sensory neurons of the larval antennae are reused in the adult antennae. Further, the larval antennal lobe gets transformed into its adult version. The beetle’s larval antennal lobe is already glomerularly structured, but its glomeruli dissolve in the last larval stage. However, the axons of the olfactory sensory neurons remain within the antennal lobe volume. The glomeruli of the adult antennal lobe then form from mid-metamorphosis independently of the presence of a functional OR/Orco complex but mature dependent on the latter during a postmetamorphic phase. Conclusions: We provide insights into the metamorphic development of the red flour beetle’s olfactory system and compared it to data on Drosophila melanogaster, Manduca sexta, and Apis mellifera. The comparison revealed that some aspects, such as the formation of the antennal lobe’s adult glomeruli at mid-metamorphosis, are common, while others like the development of sensory appendages or the role of Orco seemingly differ.