A semiparametric approach to estimating reference price effects in sales response models
It is well known that store-level brand sales may not only depend on contemporaneous influencing factors like current own and competitive prices or other marketing activities, but also on past prices representing customer response to price dynamics. On the other hand, non- or semiparametric regression models have been proposed in order to accommodate potential nonlinearities in price response, and related empirical findings for frequently purchased consumer goods indicate that price effects may show complex nonlinearities, which are difficult to capture with parametric models. In this contribution, we combine nonparametric price response modeling and behavioral pricing theory. In particular, we propose a semiparametric approach to flexibly estimating price-change or reference price effects based on store-level sales data. We compare different representations for capturing symmetric vs. asymmetric and proportional vs. disproportionate price-change effects following adaptation-level and prospect theory, and further compare our flexible autoregressive model specifications to parametric benchmark models. Functional flexibility is accommodated via P-splines, and all models are estimated within a fully Bayesian framework. In an empirical study, we demonstrate that our semiparametric dynamic models provide more accurate sales forecasts for most brands considered compared to competing benchmark models that either ignore price dynamics or just include them in a parametric way.