Constant temperature mashing at 72 °C for the production of beers with a reduced alcohol content in micro brewing systems

In this paper, we present a constant temperature mashing procedure where grist made of Pilsner malt is mashed-in directly in the temperature regime of alpha-amylase activity, thus omitting all conventional steps, followed by constant temperature mashing at 72 °C. The aim was to investigate an alternative mashing procedure for the production of alcohol-reduced beers. The mashing proceeds with a rapid buildup of sugars and is completed after 120 min at the latest, giving an iodine normal and clear wort. However, the distribution of the different sugars in the worts is strongly altered, in comparison to a more classical mashing procedure. The free amino nitrogen (FAN) concentration is sufficient for vivid fermentation with the bottom fermenting yeast Saccharomyces pastorianus TUM 34/70. The lag phase and initial fermentation performance of this yeast strain are comparable for conventionally and isothermally (72 °C) mashed wort. Under the given conditions the fermentation of the isothermally (72 °C) made wort is finished after 6 days whereas a conventional wort needs 4–5 days more to be completed. The alcohol concentration is remarkably reduced by isothermal mashing leading to roughly 3.4 vol.-% with an original gravity of 11°P whereas with a conventional mashing procedure 4.4 vol.-% are obtained for the same original gravity. In both cases the concentrations of the fermentation by-products are comparable. A preliminary comparison of tasteand foam stability did not show striking differences. Constant temperature mashing at 72 °C is a simple way to reduce the alcohol content of beer enriching it at the same time with non-fermentable sugars.

Cite

Citation style:
Could not load citation form.

Access Statistic

Total:
Downloads:
Abtractviews:
Last 12 Month:
Downloads:
Abtractviews:

Rights

Use and reproduction: