Automatic calculation and evaluation of flow in complex geometries using finite volume and lattice boltzmann methods

Trotz großen Fortschritts kann die numerische Strömungsmechanik (englisch Computational Fluid Dynamics, CFD) nicht als Blackbox-Verfahren verwendet werden, da Schritte wie die Gittergenerierung oder die Wahl numerischer Parameter vertiefte Kenntnisse der Theorie von CFD erfordert. Eine Verbesserung von CFD in Richtung einer Blackbox-Lösung würde nicht nur die Anwendungsbarriere verringern, weil weniger spezielles Wissen notwendig ist, sondern auch wissenschaftliche Erkenntnisse ermöglichen. Beispielsweise können viel mehr Datenpunkte erzeugt werden, die für die Entwicklung genauer Modelle für manche Fragestellungen notwendig sind. Diese Arbeit veranschaulicht die Vorteile einer automatisierten Berechnung anhand dreier beispielhafter Anwendungen: • Die genaue Vorhersage des Druckverlusts einer Kugelschüttung ist von großer Bedeutung in der Verfahrenstechnik. Für Schüttungen, bei denen die Kugeln relativ groß verglichen mit den Abmessungen des Behälters sind, spielt zudem der Wandeffekt eine wichtige Rolle. Viele Korrelationen, die üblicherweise auf experimentellen Messungen basieren, wurden in der Literatur vorgestellt, zeigen aber Abweichungen von ca. 20 % voneinander. Die Kombination von simulierter Generierung von Kugelschüttung und CFD wird hier verwendet, um den Druckverlust einer großen Anzahl von Kugelpackungen mit unterschiedlichen Kugeldurchmessern und für unterschiedliche Abmessungen des Behälters zu berechnen. Es wird gezeigt, dass der Druckverlust eine nicht-monotone Funktion für kleine Verhältnisse von Kugeldurchmesser zu hydraulischem Durchmesser des Reaktors ist, was die Abweichungen in den experimentellen Ergebnissen erklären kann. • Die Fischer-Tropsch-Synthese ist wieder von wachsendem Interesse, da sie die Herstellung von CO2 neutralen Treibstoffen erlaubt. Transportporen können genutzt werden, um den Stofftransport im benötigten Katalysator zu beschleunigen und somit auch die Ausbeute zu erhöhen. Ein eindimensionales Modell aus der Literatur wird in dieser Arbeit auf drei Dimensionen erweitert. Die Berechnung wird automatisiert wodurch die Katalysatorschichten algorithmisch optimiert werden können. Die Ergebnisse zeigen, dass für Transportporen mit einem Durchmesser größer als 50 µm eine drei-dimensionale Betrachtung nötig ist. Größere Transportporen mit einem Durchmesser von bis zu 250 µm können ebenfalls verwendet werden, um die Ausbeute pro Zeit und Fläche zu erhöhen, erfordern aber dickere Katalysatorschichten und eine größere Transportporenporosität um die Nachteile der größeren Poren zu kompensieren. • Nasenscheidewandverkrümmungen sind sehr verbreitet in der Bevölkerung, aber es ist unklar, warum einige Betroffene Beschwerden entwickeln während andere hingegen keine Einschränkungen haben. Bisherige Arbeiten setzten den Schwerpunkt auf die Analyse einiger ausgewählter Fälle, was aufgrund der hohen natürlichen Variationen der Nasenscheidewand zu keinen klaren Ergebnissen führte. In dieser Arbeit wird ein vollautomatischer Ansatz zur Berechnung integraler Beiwerte wie Druckverlust und der Strömungsverteilung zwischen den beiden Atemwegen ausgehend von Computertomographie-Aufnahmen vorgestellt. Zusätzlich wird eine Methode zur Verringerung des Rechenaufwandes durch das Entfernen der Nasennebenhöhlen in den CT-Bildern basierend auf maschinellem Lernen vorgeschlagen. Für diesen Anwendungsfall kann die automatische Berechnung und Auswertung verwendet werden, um eine ganze Datenbank von CT-Aufnahmen in strömungsmechanische Kennziffern umzuwandeln, die für eine statistische Analyse verwendet werden können. Weiterhin könnte sie die Anwendung von CFD in der klinischen Praxis ermöglichen. Das Lattice-Boltzmann Verfahren (LBM) ist eine alternative Methode zu „klassischen“, Finite-Volumen basierten Lösern der Navier-Stokes-Gleichungen. Da es eine einfache Generierung von Gittern erlaubt, wird hier eine neue LBM-Implementierung verwendet um die Strömung durch die Kugelschüttung und Nasenhöhle zu berechnen. Die Implementierung bietet gute Portabilität zu unterschiedlichen Systemen und zu unterschiedlicher Hardware wie Grafikkarten (GPUs), die aufgrund ihrer Kosteneffektivität die Anwendbarkeit von CFD erhöhen. Sie kann außerdem Gitterverfeinerung verwenden und es wird ein Algorithmus zur Gittergenerierung, der auch für Grafikkarten geeignet ist, vorgestellt. Um den Flaschenhals langsamer Datenspeicher zu umgehen und die Auswertung zu vereinfachen, wird eine GPU basierte in-situ Verarbeitung implementiert. Der Anwendungsfall der Fischer-Tropsch-Synthese zeigt dennoch, dass „klassische“, Finite-Volumen basierte Löser wie OpenFOAM eine ebenso valide Wahl für automatische Berechnungen sind, wenn strukturierte Gitter verwendet werden. Außerdem ist es für einige Anwendungen einfacher, die Fragestellung mittels partieller Differenzialgleichungen zu modellieren, die mittels Finite-Volumen-Verfahren direkt gelöst werden können.

Despite significant progress, computational fluid dynamics (CFD) can still not be used as a “black box approach” as meshing often requires manual intervention and the choosing of numerical parameters deep knowledge of the methods behind CFD. Improving CFD towards such a black box solution not only reduces the barrier of application as less specialized knowledge is required, but also allows for scientific insight. For example, much more data can be generated that is needed to develop accurate models for some problems. This thesis illustrates these benefits with three exemplary applications: • The accurate prediction of the pressure drop of a sphere packed bed is of great importance in engineering. For geometries where the spheres are relatively large compared to the confinement, the wall effect plays another important role. Many correlations have been presented, usually based on experimental measurements that differ in a range of approx. 20 %. Here, the combination of simulated packing generation and CFD is used to evaluate the pressure drop for a very large number of packings with different sphere diameters and different geometries of the confining walls. It is shown that for small ratios of sphere diameter to hydraulic diameter of the reactor the pressure drop is a non-monotonic function which can explain the differences in experimental findings. • The Fischer-Tropsch synthesis is again of increasing interest as it allows the production of carbon-neutral fuel. Transport pores can be added to the catalyst needed for the reaction to enhance transport and consequently the yield. A three-dimensional extension of a one-dimensional model from literature for transport and reaction is presented here. The automation of the calculation is used to enable the algorithmic optimization of the catalyst layers. The results show that for transport pores larger than 50 µm the problem must be treated as three-dimensional. Larger transport pores up to a diameter of 250 µm can also be used to achieve a gain in area-time yield, but thicker catalyst layers and a higher transport pore porosity are needed to overcome the drawbacks of larger pores. • Nasal septum deviation is very common in general population but it is unclear why it causes symptoms for certain patients while others report no discomfort. Previous studies focused on the analysis of few selected cases which did not lead to clear results as the human nose shows high natural variations in geometry. Here, a fully automatic approach for calculating critical parameters like the pressure drop and the flow distribution between the two airways from computed tomography (CT) scans is presented. Furthermore, a method to reduce the computational time by removing paranasal sinuses from the scan incorporating machine learning algorithms is proposed. For this case, fully automatic processing can be used to convert a whole database of CT scans to fluid dynamic parameters that can be used for statistical analysis. Furthermore, it could allow the introduction of CFD analysis to clinical practice. The lattice Boltzmann method (LBM) is an alternative method to “classical” finite-volume based solvers of the Navier-Stokes equations. Since it offers easy generation of grids, a novel LBM implementation is used here to calculate the flow through the sphere packings and the nasal cavity. The implementation features good portability to various systems and hardware like GPUs which due to their cost-effectiveness broaden the applicability of CFD. It can utilize grid refinement and a meshing algorithm suitable for GPUs is presented. To overcome slow IO and to simplify automatic evaluation, GPU assisted co-processing is implemented. Nevertheless, the application case of Fischer-Tropsch synthesis shows that “classical”, finite volume based solvers like OpenFOAM are also valid choice for automatic processing if structured meshes can be used. Furthermore, for some applications, it is easier to model the problem using partial differential equations which can be directly solved using FVM.

Preview

Cite

Citation style:
Could not load citation form.

Access Statistic

Total:
Downloads:
Abtractviews:
Last 12 Month:
Downloads:
Abtractviews:

Rights

Use and reproduction: