Modeling the light-induced degradation (LID) in silicon due to ASi-Sii-defects
Light-induced degradation (LID) in silicon is one of the major problems that hamper the progress in silicon solar cell technology. We present a method to model the LID kinetics by a differential equation system based on the assumption of charge-state-change-induced configuration changes of the so-called ASi-Sii-defect. Assuming realistic transition rates, we solve this differential equation system under variation of some of the transition rates. It is found that the LID kinetics can in principle be modeled by this approach but care has to be taken if transition rates put into the model are directly extracted from time-dependent carrier lifetime measurements.