Simulation of hydrogen distribution in submerged arc welded heavy plates as tool for evaluating cold cracking sensitivity for offshore structures
Foundation structures for offshore wind turbines are typically made of heavy plate structural steels, such as S420ML, welded by submerged arc welding. Due to the welding process conditions, higher amounts of hydrogen can be introduced. In this context, large plate thicknesses result in long diffusion paths and a prolonged diffusion time for hydrogen at ambient temperature and possible delayed hydrogen-assisted cold cracking. As a result, hydrogen can accumulate in areas of high mechanical stress and strain. Due to the delayed diffusion, a minimum waiting time of up to 48 h must be observed before nondestructive testing can be performed. In addition, the assessment of possible cold crack locations is very complex. For this reason, a numerical model of a component-like weld test was developed to simulate the temperature field during welding and subsequent cooling. A hydrogen diffusion model based on the temporal-local temperature distribution was established. It was applied to simulate the change of hydrogen distribution as a function of temperature cycle during multi-layer welding and further for the entire waiting time interval ≤ 48 h. As a result, crack critical areas could be evaluated in terms of accumulated hydrogen. An advantage of the diffusion model is the simulation of a normalized concentration, i.e. between "0" (no hydrogen) and "1" (max. concentration), which can be scaled to experimentally determined hydrogen concentrations. Finally, selected results for increased real hydrogen ingress are presented, which confirm the relatively high crack resistance of the S420 submerged arc welded joint.
Preview
Cite
Access Statistic
