On the generalization ability of prototype-based classifiers with local relevance determination
We extend a recent variant of the prototype-based classifer learning vector quantization to a scheme which locally adapts relevance terms during learning. We derive explicit dimensionality-independent large-margin generalization bounds for this classifer and show that the method can be seen as margin maximizer.
Vorschau
Zitieren
Zitierform:
Hammer
Zugriffsstatistik

Gesamt:
12 Monate:
Volltextzugriffe:
Metadatenansicht:
Volltextzugriffe:
Metadatenansicht:
Rechte
Nutzung und Vervielfältigung:
Alle Rechte vorbehalten