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The multifunctional process of resonance scattering 
and generation of oscillations by nonlinear layered 
structures
Lutz Angermann1* and Vasyl V. Yatsyk2

Abstract: The paper focuses on the development of a mathematical model, an 
effective algorithm and a self-consistent numerical analysis of the multifunctional 
properties of resonant scattering and generation of oscillations by nonlinear, cubi-
cally polarizable layered structures. The multifunctionality of such layered media is 
caused by the nonlinear mechanism between interacting oscillations—the incident 
oscillations (exciting the nonlinear layer from the upper and lower half-spaces) as 
well as the scattered and generated oscillations at the frequencies of excitation/
scattering and generation. The study of the resonance properties of scattering and 
generation of oscillations by a nonlinear structure with a controllable permittivity 
in dependence on the variation of the intensities of the components of the exciting 
wave package is of particular interest. In the present paper, we extend our former 
results, and furthermore we analyze the realizability of multifunctional properties of 
nonlinear electromagnetic objects with a controllable permittivity. The results of our 
investigations (i) demonstrate the possibility to control the scattering and genera-
tion properties of the nonlinear structure via the intensity of the incident field, (ii) 
indicate the possibility of increasing the multifunctionality of electronic devices, of 
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designing frequency multipliers, and other electrodynamic devices containing non-
linear dielectrics with controllable permittivity.

Subjects: Computational Physics; Mathematical Modeling; Mathematical Physics

Keywords: resonance scattering; cubic polarizability; generation of oscillations; wave 
packets; self-consistent analysis

1. Introduction
Nonlinear dielectrics with controllable permittivity are subject of intense studies and begin to find 
broad applications in device technology and electronics, where both the radio and optical (Akhmediev 
& Ankevich, 1997; Chernogor, 2004; Kivshar & Agrawal, 2003; Miloslavsky, 2008; Shen, 1984) fre-
quency ranges are of interest. We present a model of resonance scattering and generation of waves 
by an isotropic, nonmagnetic, nonlinear, layered, dielectric structure which is excited by packets of 
plane waves in the resonance frequency range in a self-consistent formulation (Angermann, 
Shestopalov, & Yatsyk, 2013; Angermann & Yatsyk, 2011a, 2011b; Angermann, Yatsyk, & Yatsyk, 
2013; Yatsyk, 2011, 2012, 2013). We consider two-sided acting wave packets consisting of both 
strong electromagnetic fields at the excitation frequency of the nonlinear structure, leading to the 
generation of waves, and of weak fields at multiple frequencies, which do not lead to the generation 
of harmonics but influence on the process of scattering and generation of waves by the nonlinear 
structure. A self-consistent numerical algorithm is developed. Based on the linearization of nonlin-
ear problems of scattering and generation of waves by cubically polarizable, layered structures, we 
provide suitable spectral problems and formulate an algorithm for the numerical determination of 
the eigenfrequencies and eigenfields. We restrict our considerations to dispersionless nonlinear  
dielectrics, however, this is not essential but only simplifies the explanations.

We discuss numerical results for the problem of third harmonic generation by resonant scattering 
of the wave packet by single nonlinear layers having either decanalizing or canalizing properties as 
well as by a three-layer structure consisting of layers with canalizing–decanalizing–canalizing prop-
erties of energy dissipation. Within the framework of a self-consistent formulation of the problem 
we see that the induced imaginary part of the permittivity of the layer is determined by the nonlinear 
part of the polarization and characterizes the loss of energy in the nonlinear medium which is spent 
for the generation of the electromagnetic field of the third harmonic (Angermann & Yatsyk, 2011a, 
2011b; Angermann, Yatsyk, et al., 2013; Yatsyk, 2012, 2013). The consideration of weak fields at 
multiple frequencies leads only to an increase of the portion of generated energy (Angermann, 
Kravchenko, Pustovoit, & Yatsyk, 2013a; 2013b; Angermann & Yatsyk, 2012, 2013a, 2013b). In par-
ticular, the investigation of a nonlinear single-layered decanalizing structure disclosed the effect of 
type-conversion of the generated oscillations in the case of an increasing amplitude of the incident 
field at the excitation frequency. In the range of third harmonic generation, this effect is also ob-
served in the case of an increasing amplitude of the weak field at double frequency (Angermann & 
Yatsyk, 2012, 2013a, 2013b; Angermann, Krevchenko, et al., 2013a, 2013b). In this paper, for the first 
time two-sided acting fields at the scattering frequency are investigated and type-conversions by 
variation of the amplitude of the two-sided acting excitation fields were found.

The numerical computations of the eigenfrequencies and eigenfields of the linearized problems 
show that the resonant scattering and generation properties of a nonlinear structure are deter-
mined by the proximity of the excitation frequencies of the nonlinear structure to the complex  
eigenfrequencies of the corresponding homogeneous linear spectral problems with an induced non-
linear dielectric permittivity of the medium. In this paper, we propose an effective method to  
describe the processes of generation of oscillations via the variation of the relative magnitude of the 
Q-factor of the eigenoscillations corresponding to the eigenfrequencies of the scattering and gener-
ating structure when the intensity of the excitation field changes.
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2. Formulation of the boundary-value problems of scattering and third harmonic 
generation of oscillations
In the framework of a self-consistent formulation, we investigate the problem of resonant scattering 
and generation of waves by a nonlinear, nonmagnetic, isotropic, cubically polarizable, linearly 

E-polarized � =
(
E1, 0, 0

)T
, � =

(
0, H2, H3

)T
 layered, dielectric structure (see Figure 1), which is 

excited by packets of plane stationary electromagnetic waves, where the time dependency of the 
fields is of the form exp

(
−in� t

)
, n  ∊  N, and the vector of cubic polarization is given as 

�
(NL) =

(
P(NL)
1
, 0, 0

)T
. Here, the variables x, y, z, t denote dimensionless spatial–temporal coordi-

nates such that the thickness of the layer is equal to 4� � ; nω = nκc are the dimensionless circular 
frequencies and nκ are dimensionless frequency parameters such that n� = n�∕c = 2�∕�n�. These 
parameters characterize the ratios of the true thickness h of the layer to the lengths of the incident 
waves �n�, i.e. h∕�n� = 2n��, where c = (�0 �0)

−1∕2 denotes a dimensionless parameter, equal to 
the absolute value of the speed of light in the medium containing the layer, Imc = 0. ɛ0 and μ0 are 
the material parameters of the medium. The absolute values of the true variables x′, y′, z′, t′ ,�′ 
are given by the formulas 

(
x�, y�, z�, t�

)T
=

h

4��
(x, y, z, t)T and �� =

4��

h
�.

We consider packets of plane waves consisting of strong fields at the frequency κ (which generate 
a field at the triple frequency 3κ) and of weak fields at the frequencies 2κ and 3κ (having an impact 
on the process of third harmonic generation due to the contribution of weak electromagnetic fields):

where

with δ  >  0, amplitudes 
{
aincn� , b

inc
n�

}3

n=1
; angles of incidence 

{
�n� , � − �n�

}3
n=1

, ||𝜙n𝜅|| < 𝜋∕2 (cf. 

Figure 1) and frequencies nκ, n = 1, 2, 3. Here Φnκ = nκ sin ϕnκ are the longitudinal propagation con-

stants and Γn� =

√
(n�)2 − Φ2

n�  are the transverse propagation constants, where ϕnκ is the given 

angle of incidence of the exciting field at the frequency nκ (cf. Figure 1). The upper/lower excitation 
fields of the nonlinear layer are denoted by overlined/underlined symbols.

Subject to Kleinman’s rule (i.e. the equality of all coefficients � (3)

1111
 at multiple frequencies 

(Kleinman, 1962; Miloslavsky, 2008), the problem under consideration can be reduced to the follow-
ing system of boundary value problems with respect to the complex Fourier amplitudes of the scat-
tered and generated fields

 

{
Ēinc
1
(n𝜅; y, z)

}3

n=1
∪
{
Einc
1
(n𝜅; y, z)

}3

n=1

{{
Ēinc
1
(n𝜅; y, z)

Einc
1
(n𝜅; y, z)

}
=

{
aincn𝜅
bincn𝜅

}
exp

[
i
(
Φn𝜅 y ∓ Γn𝜅

(
z ∓ 2𝜋 𝛿

))]
, z

<

<
± 2𝜋 𝛿

}3

n=1

(1)

E1(n𝜅; y, z) = 𝜒
(
z − 2𝜋𝛿

)
Ēinc1 (n𝜅; y, z) + 𝜒

(
−z − 2𝜋𝛿

)
Einc
1
(n𝜅; y, z) + E

scat/gen

1
(n𝜅; y, z):[

Δ + (n𝜅)2𝜀
n𝜅

(
z, 𝛼(z), E1(𝜅; y, z) , E1

(
2𝜅; y, z

)
, E1

(
3𝜅; y, z

))]
E1(n𝜅; y, z)

= −𝛿1
n
𝜅
2
𝛼(z)E21

(
2𝜅;y, z

)
E∗1
(
3𝜅; y, z

)

−𝛿3
n

(
3𝜅

)2
𝛼(z)

{
E31(𝜅; y, z)∕3 + E

2
1

(
2𝜅; y, z

)
E∗1(𝜅; y, z)

}
, n = 1, 2, 3,

Figure 1. The nonlinear 
dielectric layered structure.
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where χ(z) = {0, z < 0; and 1, z ≥ 0}—the Heaviside function, Δ = �
2
/
�y 2 + �

2
/
� z2, �kn—Kronecker’s 

symbol,

 

—the dielectric permittivity, �(z) = 6��(
3)
1111

(z)—the function of cubic susceptibility of the nonlinear 
medium, � (1)

11
 and �(

3)
1111

—components of the susceptibility tensors of the nonlinear medium.

The scattered and generated field in a transversely inhomogeneous, non-linear dielectric layer 
excited by a plane wave is quasi-homogeneous along the coordinate y; hence, it can be represented 
as follows:

Condition 1. E
1
(n�; y, z) = U(n�; z) exp

(
iΦ

n�
y
)
, n = 1, 2, 3.

Here U(n�; z) and Φnκ = nκ sin ϕnκ denote the complex-valued transverse component of the Fourier 
amplitude of the electric field and the value of the longitudinal propagation constant (longitudinal 
wave-number) at the frequency nκ, respectively.

The dielectric permittivities of the layered structure at the multiple frequencies nκ are determined 
by the values of the transverse components of the Fourier amplitudes of the scattered and gener-
ated fields, i.e. by the redistribution of energy of the electric fields at multiple frequencies, where the 
angles of incidence are given and the nonlinear structure under consideration is transversely inho-
mogeneous. The condition of the longitudinal homogeneity (along the coordinate y) of the nonlinear 
layered structure (2) can be written as follows:

Having used the representation (2) for �(NL)n�  and the Condition 1, we obtain the following physically 
consistent requirement, which we call the condition of the phase synchronism of waves:

Condition 2. Φn� = nΦ
�
 or φnκ = φκ, n = 1, 2, 3.

It has been shown in detail in Angermann and Yatsyk (2011), Yatsyk (2011) that the Condition 2 is 
a formal consequence of Condition 1 and Equation (2) but not an independent assumption. We note 
that in view of Condition 2 the nonlinear layered structure remains longitudinally homogeneous. In 
this case, the quasi-homogeneous plane waves exciting the nonlinear layer at a set of multiple fre-

quencies {n�}3n=1 impinge on the nonlinear layer at the angles 
{
�n� , � − �n�

}3
n=1

, ||𝜙n𝜅|| < 𝜋∕2 with 

equal values φnκ  =  φκ, but the amplitudes 
{
aincn� , b

inc
n�

}3

n=1
 of these waves may be arbitrary (cf. 

Condition 2 and Figure 1).

In addition, we pose the following conditions:

Condition 3. The tangential components �tg(n�; y, z) and �tg(n�; y, z) of the intensity vectors of 
the full electromagnetic fields � and � are continuous at the boundaries of the layered structure.

Condition 4. Escat/gen
1

(n𝜅; y, z) =

{
ascat/genn𝜅

bscat/genn𝜅

}
exp

[
i
(
Φn𝜅y ± Γn𝜅

(
z ∓ 2𝜋 𝛿

))]
, z

>

<
± 2𝜋 𝛿, 

for ImΓn� ≡ 0 and  ReΓn𝜅 > 0—the radiation condition w.r.t. the scattered and generated fields.

(2)

𝜀
n𝜅

=
{
1 , |z| < 2𝜋𝛿; and 𝜀

(L) + 𝜀
(NL)

n𝜅
, |z| ≤ 2𝜋𝛿} ,

𝜀
(L) = 1 + 4𝜋𝜒

(1)

11
(z) ,

𝜀
(NL)

n𝜅
= 𝛼(z)

[
3∑

m=1

||E1(m𝜅; y, z)||2 +
{

𝛿
1

n

[
E∗
1
(𝜅; y, z)

]2
E
1
(𝜅; y, z)

+ 𝛿
2

n

E∗
1

(
2𝜅; y, z

)

E
1

(
2𝜅; y, z

)E1(𝜅; y, z)
}
E
1

(
3𝜅; y, z

)]
,

�
n�

(
z, �(z), E

1
(�;y, z), E

1

(
2�; y, z

)
, E

1

(
3�; y, z

))
= �

n�

(
z, �(z),U(�; z),U

(
2�; z

)
,U

(
3�; z

))
, n = 1, 2, 3.
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The sought complex Fourier amplitudes of the total scattered and generated fields in the problem 
(1) incl. Conditions 1–4 at the multiple frequencies {n�}3n=1 can be represented in the form

 

Taking into consideration (3), the nonlinear system (1) incl. Conditions 1–4 is equivalent to a system 
(see Angermann & Yatsyk, 2011a, 2011b) of nonlinear boundary-value problems of Sturm–Liouville 
type

 

and also to a system of one-dimensional nonlinear integral equations w.r.t. the unknown functions 
U(n�; ⋅) ∈ L2

(
−2��, 2��

)
,

 

Here Ūinc(n𝜅; z) = aincn𝜅 exp
[
−i Γ

n𝜅

(
z − 2𝜋 𝛿

)]
, Uinc(n�;z) = bincn� exp

[
+i Γn�

(
z + 2� �

)]
, 

n = 1, 2, 3.

The solution of the problem (1) incl. Conditions 1–4, represented in (3), can be obtained from (4) or 
(5) using the formulas U

(
n�; 2��

)
= a inc

n�
+ a scat/gen

n�
, U

(
n�; − 2��

)
= bincn� + bscat/genn� , n = 1, 2, 3.

3. Self-consistent analysis of the system of nonlinear equations and 
eigenoscillations
According to Angermann and Yatsyk (2011a, 2011b, 2012, 2013a, 2013b), Angermann, Yatsyk, et al. 
(2013), Angermann, Krevchenko, et al. (2013a, 2013b), Yatsyk (2012, 2013), the application of suit-
able quadrature rules to the system (5) leads to a system of complex-valued nonlinear algebraic 
equations of the second kind
 

where �n� =
{
Ul(n�)

}N
l=1

≈
{
Un�

(
zl
) ≡ U(n�;zl)}Nl=1—the vectors of the unknown approximate 

values of the solution, 
{{
zl
}N
l=1
: z1 = −2𝜋𝛿 < ... < zl < ... < zN = 2𝜋𝛿

}
—a discrete set of interpo-

lation nodes, � = {�ml }Nl,m=1—the identity matrix, �n�

(
�

�
,�2� ,�3�

)
—nonlinear matrices, 

�
�

(
�2� ,�3�

)
, �3�

(
�

�
,�2�

)
—the vectors of the right-hand sides determined by the choice of the 

(3)

E1(n𝜅;y, z) = U(n𝜅;z) exp
�
i Φn𝜅y

�

=

⎧
⎪⎨⎪⎩

aincn𝜅 exp
�
i
�
Φn𝜅y − Γn𝜅

�
z − 2𝜋 𝛿

���
+ ascat/genn𝜅 exp

�
i
�
Φn𝜅y + Γn𝜅

�
z − 2𝜋 𝛿

� ��
, z < 2𝜋 𝛿,

U(n𝜅;z) exp
�
i Φn𝜅y

�
, �z� ≤ 2𝜋 𝛿,

bincn𝜅 exp
�
i
�
Φn𝜅y + Γn𝜅

�
z + 2𝜋 𝛿

���
+ bscat/genn𝜅 exp

�
i
�
Φn𝜅y − Γn𝜅

�
z + 2𝜋 𝛿

���
, z < −2 𝜋 𝛿.

(4)

[
d2∕dz2 + Γ2

n𝜅
− (n𝜅)2

{
1 − 𝜀

n𝜅

(
z, 𝛼(z),U(𝜅; z) ,U

(
2𝜅; z

)
,U

(
3𝜅; z

))}]
U(n𝜅; z)

= −(n𝜅) 2𝛼(z)
(
𝛿
1

n
U2

(
2𝜅;z

)
U∗

(
3𝜅; z

)
+ 𝛿

3

n

{
U3(𝜅; z)∕3 + U2

(
2𝜅; z

)
U∗(𝜅; z)

})
, |z| ≤ 2𝜋𝛿,

[
i Γ

n𝜅
− d∕dz

]
U
(
n𝜅;2𝜋𝛿

)
= 2i Γ

n𝜅
Ūinc

(
n𝜅; 2𝜋𝛿

)
,[

i Γ
n𝜅

+ d∕dz
]
U
(
n𝜅; − 2𝜋𝛿

)
= 2i Γ

n𝜅
U
inc
(
n𝜅; − 2𝜋𝛿

)
, n = 1, 2, 3,

(5)

U(n𝜅; z) +
i (n𝜅)2

2Γ
n𝜅

2𝜋𝛿

∫
−2𝜋𝛿

exp
(
i Γ

n𝜅
|z − 𝜉|)[1 − 𝜀

n𝜅

(
𝜉, 𝛼(𝜉),U(𝜅; 𝜉),U

(
2𝜅; 𝜉

)
,U

(
3𝜅; 𝜉

))]
U(n𝜅; 𝜉)d𝜉

=
i(n𝜅)2

2Γ
n𝜅

2𝜋𝛿

∫
−2𝜋𝛿

exp
(
i Γ

n𝜅
|z − 𝜉|)𝛼(𝜉)

[
𝛿
1

n
U2

(
2𝜅; 𝜉

)
U∗

(
3𝜅; 𝜉

)

+𝛿
3

n

{
U3(𝜅; 𝜉)∕3 + U2

(
2𝜅; 𝜉

)
U∗(𝜅; 𝜉)

}]
d𝜉 + Ūinc(n𝜅; z) + U

inc
(n𝜅; z) , n = 1, 2, 3.

(6)

[
� − �n�

(
�

�
,�2� ,�3�

)]
�n�

= �
1
n��

(
�2� ,�3�

)
+ �

3
n�3�

(
�

�
,�2�

)
+ �

inc

n� + �
inc

n�
, n = 1, 2, 3,
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quadrature rule, and �
inc

n� =
{
aincn� exp

[
−i Γn�

(
zl − 2� �

)]}N

l=1
, 

�
inc

n�
=
{
bincn� exp

[
+i Γn�

(
zl + 2� �

)]}N

l=1
—the vectors induced by the incident wave packets. A 

solution of (6) can be found iteratively by the help of a block Jacobi method, where at each step a 
system of linearized algebraic equations is solved.

The analytic continuation of the linearized nonlinear problems into the region of complex values 
of the frequency parameter allows us to switch to the analysis of spectral problems (Angermann & 
Yatsyk, 2011, 2012, 2013a, 2013b; Angermann, Yatsyk, et al., 2013; Shestopalov & Sirenko, 1989; 
Shestopalov & Yatsik, 1997; Yatsyk, 2000, 2001, 2013). The problem of finding the eigenfrequencies 
κn and the eigenfields �

�n
 reads as follows (cf. (6)):

 

where 𝜅n ∈ Ωn𝜅 ⊂ Hn𝜅, at � ≡ �
inc, n = 1, 2, 3, Ωnκ are the sets of eigenfrequencies and Hn� denote 

two-sheeted Riemann surfaces (cf. Figure 2), �
�
n

=
{
U
l

(
�
n

)}N
l=1

≈
{
U
(
�
n
; z

l

)}N
l=1

—the vector of 
unknown values of the nontrivial solution at the nodes in the layer corresponding to the eigenfre-
quency κn, �n�

(
�
n

)
= �

n�

(
�
n
; �

�
,�

2�
,�

3�

)
—the matrix with the given vectors �n� (cf. (6)).

We mention that the radiation condition to the eigenfield (cf. Condition 4)

for real values of the parameters κn and Φnκ is consistent with the physically justified requirement of 
the absence of waves coming from infinity z = ± ∞ in the radiation field:

 

The nontrivial solutions of the spectral problem (7) allow us to write the electric components of the 
eigenfield as follows:

 

(7)

{
f
n𝜅

(
𝜅
n

)
= det

[
� − �

n𝜅

(
𝜅
n

)]
= 0[

� − �
n𝜅

(
𝜅
n

)]
�

𝜅
n

= � 𝜅 ≡ 𝜅
inc; 𝜅

n
∈ Ω

n𝜅
⊂ H

n𝜅
,

E
1

(
𝜅n; y, z

)
=

{
a
𝜅n

b
𝜅n

}
exp

[
i
(
Φn𝜅y ± Γ

𝜅n

(
𝜅n,Φn𝜅

)(
z ∓ 2𝜋 𝛿

))]
, z

>

<
± 2𝜋 𝛿, n = 1, 2, 3

(8)
Im Γ

�
n

(
�
n
,Φ

n�

) ≥ 0, ReΓ
�
n

(
�
n
,Φ

n�

)
⋅ Re �

n
≥ 0, for Im Φ

n�
= 0 Im �

n
= 0, n = 1, 2, 3.

(9)

E
1

�
𝜅n;y, z

�
= U

�
𝜅n;z

�
exp

�
i Φn𝜅 y

�

=

⎧⎪⎨⎪⎩

a
𝜅n
exp

�
i
�
Φn𝜅 y + Γ

𝜅n

�
𝜅n,Φn𝜅

� �
z − 2𝜋 𝛿

� ��
, z < 2𝜋 𝛿,

U
�
𝜅n;z

�
exp

�
i Φn𝜅 y

�
, �z� ≤ 2𝜋 𝛿,

b
𝜅n
exp

�
i
�
Φ n𝜅 y − Γ

𝜅n

�
𝜅n,Φn𝜅

� �
z + 2𝜋 𝛿

���
, z < −2𝜋 𝛿,

𝜅n ∈ Ωn𝜅 ⊂ Hn𝜅 , n = 1, 2, 3.

Figure 2. The geometry of the 
two-sheeted Riemann surfaces 
Hnκ.
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Here: � ≡ �
inc—a given constant value equal to the excitation frequency of the nonlinear structure, 

a
�n
= U

(
�n; 2��

)
 и b

�n
= U

(
�n; − 2��

)
—the radiation coefficients of the eigenfield, 

Γ
�n

(
�n,Φn�

)
=
(
�
2
n − Φ2

n�

)1∕2
—the functions of the transverse propagation (depending on the 

complex spectral frequency parameters κn), Φn� = n� sin
(
�n�

)
—the given real values of the longi-

tudinal propagation constants.

The range of variation of the spectral frequency parameters is completely determined by the 
boundaries of the possible analytic continuation of the canonical Green’s functions (i.e. the Green’s 
functions for the unperturbed quasi-homogeneous problems with �n� ≡ 1, n = 1, 2, 3) into the 
complex spaces of the spectral frequency parameters κn (Angermann & Yatsyk, 2011, 2012, 2013a, 
2013b; Angermann, Yatsyk, et al., 2013; Shestopalov & Sirenko, 1989; Shestopalov & Yatsik, 1997; 
Yatsyk, 2000, 2001, 2013).

These complex spaces are two-sheeted Riemann surfaces Hn� (see Figure 2) with real algebraic 
branch points of second-order �n

±: Γ
�n

(
�n

±,Φn�

)
= 0 (i.e. �

n
± = ± |Φ

n�
|, n = 1, 2, 3) and cuts 

along the lines

 

The first, proper (or physical) sheets (i.e. the pair of values 
{
�n ,Γ�n

(
�n ,Φn�

)
}) on each of the sur-

faces Hn�, n = 1, 2, 3, are completely determined by the condition (8) and the cuts (10). At the first 

sheets Hn� the signs of the pairs 
{
�n , ReΓ�n

}
 and 

{
�n , ImΓ

�n

}
 are distributed as follows: 

Im Γ
𝜅n
> 0 for 0 < arg 𝜅n < 𝜋, Re Γ

�n
≥ 0 for 0 < arg 𝜅n < 𝜋∕2 and Re Γ

�n
≤ 0 for 

𝜋∕2≤ arg 𝜅n < 𝜋. For points κn with 3�∕22 ≤ arg �n ≤2� the function values (where 

(Re𝜅n )
2 − (Im𝜅 n)

2 − Φ2
n𝜅 > 0) are determined by the condition Im Γ

𝜅n
< 0, Re Γ

𝜅n
> 0, for the re-

maining points κn the function Γ
�n

(
�n ,Φn�

)
 is determined by the condition Im Γ

𝜅n
> 0, Re Γ

�n
≤ 0. 

In the region 𝜋 < arg 𝜅n < 3𝜋∕2 the situation is similar to the previous one up to the change of the 
sign of Re Γ

�n
. The second, improper (or unphysical) sheets of the surfaces Hn�, n = 1, 2, 3, are dif-

ferent from the proper ones in that, for each κn, the signs of both Re Γ
�n

 and Im Γ
�n

 are reversed.

The eigenfrequencies 𝜅n ∈ Ωn𝜅 ⊂ Hn𝜅, n = 1, 2, 3, i.e. the characteristic numbers of the disper-
sion equations of problem (7), are obtained by solving the corresponding dispersion equations 
fn�

(
�n

)
= det

(
� − �n�

(
�n

))
= 0 using Newton’s method or a modification of it. The nontrivial solu-

tions �
�n

 of the homogeneous systems 
(
� − �n�

(
�n

))
⋅ �

�n
= � of linear algebraic equations (7) 

corresponding to these characteristic numbers are the eigenfields (9) of the linearized nonlinear 
layered structures with an induced dielectric permittivity (2). Obviously, the solutions �

�n
 are sought 

up to an arbitrary multiplicative constant. Therefore, we have required that U
(
�
n
; 2��

)
= a

�
n

≡ 1, 
n = 1, 2, 3, in the representation (9) of �

�n
.

Finally, we mention that the classification of scattered, generated, or eigenfields of the dielectric 
layer by the Hm,l,p-type adopted in our paper is identical to that given in (Angermann & Yatsyk, 2012, 
2013a, 2013b; Shestopalov & Sirenko, 1989; Shestopalov & Yatsik, 1997; Yatsyk, 2000, 2001, 2011). 
In the case of E-polarization, Hm,l,p (or TEm,l,p) denotes the type of polarization of the wave field under 
investigation. The subscripts indicate the number of local maxima of ||Ex|| (or |U|, as |U| = ||Ex||, see (3), 
(9)) in the dielectric layer, i.e. along the coordinate axes x, y и z (see Figure 1). Since the considered 
waves are homogeneous along the x-axis and quasi-homogeneous along the y-axis, we actually 
study fields of the type H0,0,p (or TE0,0,p), where the subscript p is equal to the number of local maxima 
of the function |U| of the argument z in 

[
−2��, 2��

]
.

G(QH)

0

(
�
n
; y , z, z

0

)
=
i

2
exp

{
i
[
Φ

n�
y + Γ

�
n

(
�
n
,Φ

n�

) ||z − z0||
] }

∕Γ
�
n

(
�
n
,Φ

n�

)
, n = 1, 2, 3.

(10)(Re �n )
2 − (Im �n )

2 − Φn�
2 = 0 , Im �n ≤ 0, n = 1, 2, 3.
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4. Numerical results
In order to describe the scattering and generation properties of the nonlinear structure, we intro-
duce the following notation:
 

and

 

The quantities R+n� , R
−

n� are called scattering/generation (or radiation) coefficients of the waves w.r.t. 
the total intensity of the incident packet. (Note that alternatively the radiation coefficients can be 
chosen according to 

(
R±n�

)1∕2
).

We define by

the total energy of the scattered and generated fields at the frequencies nκ and consider the 
quantity

 

which characterizes the portion of energy generated in the third harmonic in comparison to the  
energy scattered in the first harmonic.

In the case of problem (1) incl. Conditions 1–4, for nonabsorbing media with Im
[
�
(L)(z)

] ≡ 0, the 
validity of the energy balance law

has been verified numerically. Computational experiments for the processes of scattering and gen-
eration of oscillations without any impact of weak fields ainc2� = ainc3� = 0 have shown that the error of 
the energy balance law

does not exceed the value |||W
(Error)||| < 10

−8. The consideration of weak fields aincn� ≠ 0, n = 2, 3 in 
the investigation of the same scattering and generation processes can lead to errors in the balance 
equation of a few percent (Angermann & Yatsyk, 2012, 2013a, 2013b; Angermann, Krevchenko,  
et al., 2013a, 2013b). This indicates that the amplitudes of the weak fields aincn� ≠ 0, n = 2, 3 are suf-
ficiently large, and that these fields can serve as a source of generation of oscillations themselves. 
In such situations the presented mathematical model (1) incl. Conditions 1–4 (cf. also (6)) and the 
linearized spectral problems (7) should take into account the complex Fourier amplitudes of oscilla-
tions at frequencies nκ with numbers n larger than three.

4.1. Decanalizing and canalizing nonlinear media
Consider a decanalizing (𝛼(z) < 0) and a canalizing (𝛼(z) > 0) nonlinear dielectric structure with the 
parameters �(L)(z) = 16, �(z) = ∓0.01, δ = 0.5. The excitation of the nonlinear layer takes place from 
above by only one strong top electromagnetic field at the basic frequency, i.e. {
ainc
�

≠ 0, ainc2� = 0, ainc3� = 0
}
, 
{
binc
�

= 0, binc2� = 0, binc3� = 0
}

 and � = �
inc = 0.375.

(11)R+n𝜅 =
|||a
scat∕gen
n𝜅

|||
2

∕

3∑
s=1

(|||a
inc
s𝜅

|||
2

+
|||b
inc
s𝜅

|||
2
)
if z < 2𝜋𝛿,

(12)R−n𝜅 =
|||b
scat∕gen
n𝜅

|||
2

∕
∑3

s=1

(|||a
inc
s𝜅

|||
2

+
|||b
inc
s𝜅

|||
2
)
if z < −2𝜋𝛿.

Wn� =
|||a
scat/gen
n�

|||
2

+
|||b
scat/gen
n�

|||
2

, n = 1, 2, 3

(13)W3�∕W�
=
W3�

(
a
scat/gen

3�
, b

scat/gen

3�

)

W
�

(
ascat/gen
�

, bscat/gen
�

)

∑3

n=1

[
R+n� + R

−

n�

]
= 1

W(Error) = 1 −
∑3

n=1

[
R+n� + R

−

n�

]
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The study of the scattering and generation properties of the nonlinear layers is carried out by 
means of consideration of the eigenmodes. The computational results are shown in Figures 3–8 
pairwise, for media with a value of the cubic susceptibility α = −0.01 (left column) and α = +0.01 (right 
column).

In the case of decanalizing media in Figure 3 (left column), the maximal portion of generated en-
ergy W3�∕W�

 is observed for ainc
�

= 24 and normal excitation ϕκ = 0° of the nonlinear layer. In the 
investigated range of amplitudes and incident angles ainc

�
∈
[
1, 24

]
, �

�
∈
[
0◦ , 90◦

)
, an increase of 

W3�∕W�
 is observed for parameters corresponding to the closest values of the scattering coeffi-

cients R+
�
≈ R−

�
. The maximal portion of generated energy W3�∕W�

= 0.039 does not exceed 4%.

In the case of canalizing media in Figure 3 (right column) in the range of ainc
�

∈
[
1, 19

]
, 

�
�
∈
[
0◦, 60◦

]
 the maximal value W3�∕W�

= 0.2505 for ainc
�

= 14 and ϕκ = 60° reaches 25%. The 
increase of the portion of generated energy W3�∕W�

 is achieved by increasing the amplitude ainc
�

at 
incident angles ϕκ which lie slightly above the canalizing angle. The latter corresponds to the great-
est possible transparency of the scattering at the frequency κ, where the reflection coefficient R+

�
 is 

minimal and the transmission coefficient R−
�
 is maximal.

We can state that in the case of canalizing layers the portion of generated energy W3�∕W�
 is 

maximal in the region of higher transparency of the nonlinear structure, see Figure 3 (top right), 
where the radiation coefficients R+3� and R−3� at the generation frequency are close each to the other 
on both sides of the canalizing layer, see Figure 3 (bottom right).

The radiation fields and the induced nonlinear permittivity of the nonlinear decanalizing and can-
alizing layers, corresponding to the eigenmodes depicted in Figure 3, are shown in Figure 4. The 
graphs no. 1 show the values of the linear part of the dielectric permittivity �(L) of the nonlinear 
structure. The values of the dielectric permittivity of the nonlinear structure at the excitation fre-
quency are represented by the graphs no. 4 and no. 5, whereas the graphs no. 6 and no. 7 illustrate 
the values of the dielectric permittivity of the nonlinear structure at the generation frequency.

Figure 3. Relative portion 
of energy generated in the 
third harmonic W

3�
∕W

�
, the 

scattering R+

�
,R

−

�
 and generation 

R
+

3�
R
−

3�
 coefficients for α = −0.01 

(left top/bottom) and for 
α = +0.01 (right top/bottom).
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The nonlinear components �(NL)n�  of the dielectric permittivities ɛnκ at each of the frequencies κ и 3κ 
are determined by the magnitudes of the fields U(�;z) and U

(
3�; z

)
. For nonabsorbing media 

Im�
(L)(z) ≡ 0, taking into account the cubic susceptibility �(z), the equality Im�n�(z) = Im�

(NL)
n� (z) 

holds, see (2). The increase of the amplitude ainc
�

 of the incident field at the frequency κ leads to the 
generation of the third harmonic field U

(
3�; z

)
. In the case under study the quantity Im�

(NL)
�

(z) (or 
Im�

�
(z) if Im�

(L)(z) ≡ 0) takes positive as well as negative values along the height of the nonlinear 

Figure 4. Curves at ainc
�

= 24, 
ϕκ = 0° for α = −0.01 (left) and at 
a
inc

�
= 14, ϕκ = 66° for α = +0.01 

(right): 1 – �(L), 2 – |U(�;z)|, 
3 – |

|

U
(

3�;z
)

|

|

, 4 – Re
(
�
�

)
, 5 – Im

(

�
�

)

, 6 – Re
(

�
3�

)

 , 7 – Im
(

�
3�

)

≡ 0.

Figure 5. Scattered 
|

|

|

|

U
�

[

a
inc

�
, z

]

|

|

|

|

 

and generated 
|

|

|

|

U
3�

[

a
inc

�
, z

]

|

|

|

|

 
fields in the nonlinear layer at 
ϕκ = 0° for α = −0.01 (left) and 
ϕκ = 60° for α = +0.01 (right).

Figure 6. Curves at ϕκ = 0°, for 
α = −0.01 (left) and at ϕκ = 60° 
for α = +0.01 (right): 1 – R+

�
, 

2 – R−
�
, 3 – R+

2�
≡ 0, 4 – R−

2�
≡ 0, 

5 – R+

3�
, 6 – R−

3�
, 7 – W

3�
∕W

�
.

Figure 7. Curves at 
ϕκ = 0° (left) and ϕκ =  60° 
(right): 1 … � = �

inc
= 0.375, 

2 … 3� = �
gen

= 3�
inc; 

3.1 … Re
(

�
(L)

1

)

, 3.2 …  
Im

(

�
(L)

1

)

, 4.1 …  
Re

(

�
(L)

3

)

, 4.2 … Im
(

�
(L)

3

)

 for 
α ≡ 0; 5.1 … Re

(

�
(NL)

1

)

, 5.2 …  
Im

(

�
(NL)

1

)

, 6.1 …  
Re

(

�
(NL)

3

)

, 6.2 … Im
(

�
(NL)

3

)

 
for α = −0.01 (left) and for 
α = +0.01 (right).
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layer (see Figure 4, graphs no. 5). The described situation of varying Im�
(NL)
�

(z) characterizes that 
portion (the “loss”) of energy in the nonlinear medium (at the excitation frequency κ) which is spent 
for the generation of the electromagnetic field of the third harmonic (at the frequency 3κ) 
(Angermann & Yatsyk, 2011a, 2011b, 2012, 2013a, 2013b; Angermann,Yatsyk, et al., 2013; 
Angermann, Krevchenko, et al., 2013a, 2013b; Yatsyk, 2012, 2013). The generated fields at the fre-
quency 3κ are weak. They do not give any energy to generate new harmonics. Here, Im�

(NL)

3�
(z) ≡ 0 

(see Figure 4, graphs no. 7, Im�3�(z) ≡ 0 if Im�
(L)(z) ≡ 0).

Furthermore, in Figure 4 the absolute values of the amplitudes |U(�; z)| of the total scattered field 
of type H0,0,4 at the excitation frequency κ (graphs no. 2 left/right) and |||U

(
3�; z

)||| of the generated 
field at the frequency 3κ of type H0,0,9 (left graph no. 3) and type H0,0,10 (right graph no. 3) are shown. 
The values |U(�; z)| и |||U

(
3�; z

)||| are given in the nonlinear structure |z| ≤ 2��, as well as in the 
zones of radiation (reflection z > 2πδ and transmission z < −2πδ). In Figure 4, we see a symmetry vio-
lation in the generated field in the radiation zone (graphs no. 3, left/right). This effect is more distinct 
in the case of a decanalizing layer, compare the values of the generated fields |||U

(
3�; z

)||| in the ra-
diation zones |z| > 2𝜋𝛿 and in the nonlinear layer |z| ≤ 2��. In particular, inside the decanalizing 
layer the symmetry violation is accompanied by the presence of an inflection point z ≈ 1, 25, where 
|||U
(
3�;z

)||| = 1, 81 for ainc
�

= 24, see graph no. 3 in Figure 4 (left) and the surface 
||||U3�

[
ainc
�
, z
] |||| in 

Figure 5 (left).

Figure 5 shows the surfaces 
||||U�

[
ainc
�
, z
] |||| and 

||||U3�
[
ainc
�
, z
] |||| reflecting the dynamics of the behav-

ior of the scattered |U(�; z)| and generated |||U
(
3�; z

)||| fields in a decanalizing (left) and in a canaliz-

ing (right) nonlinear layer. In the considered ranges of amplitudes ainc
�

, the plane waves exciting the 
nonlinear layer under the angle ϕκ produce a scattered field Uκ of the type H0,0,4.

The generated field U3κ of a canalizing layer, observed in the range ainc
�

∈
[
5, 22

]
, has the type 

H0,0,10, Figure 5 (right). In the case of a decanalizing layer, the generated field U3κ changes its type 
with increasing amplitude ainc

�
. The generation of a third harmonic field U3κ is observed in the range 

Figure 8. The Q-factor and 
the relative Q-factor. Curves: 
1 … Q

�1
, 3 … Q

�3
, and … Q

�1
∕Q

�3
 at 

�
inc

= 0.375, �
n
= �

(NL)

n
,  

n = 1, 3, for ϕκ = 0°, α = −0.01 
(left top/bottom) and for 
ϕκ = 60°, α = +0.01 (right top/
bottom).
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ainc
�

∈
[
4, 24

]
, Figure 5 (left). Here, it is of the type H0,0,10 for ainc

�
∈
[
4, 23

)
 and of the type H0,0,9 for 

ainc
�

∈
[
23, 24

]
. The type-conversion of the generated oscillations from H0,0,10 to H0,0,9 with increasing 

ainc
�

 is due to the loss of one maximum point of the function |||U
(
3�; z

)||| for z ∈
[
−2��, 2��

]
 at the 

inflection point z  =  1.15 for ainc
�

= 23, see the point with coordinates (
ainc
�

= 23, z = 1.15, ||U3� || = 1.61
)

 on the surface 
||||U3�

[
ainc
�
, z
] ||||, Figure 5 (left).

The increase in the intensity of the excitation field leads to critical inflection points of the function 
(the absolute value of the amplitude of the scattered/generated field) identifying the type of oscilla-
tion. If in these points the local maximum of the function along the characteristic spatial coordinate 
of the investigated structure (the transverse coordinate along the height of the nonlinear layer) is 
lost, then the effect of type-conversion of the radiation field occurs. The amplitudes of the incident 
field, for which the described effect is observed, can be called the threshold of the considered types 
of oscillations.

The violation of symmetry in the excitation of the nonlinear structure ainc
�

≠ binc
�

 (ainc
�

= const ≠ 0, 
binc
�

= 0) leads to a violation of symmetry of the radiation coefficients R±
�

(
ainc
�
, �

�

)
 at the scattering 

frequencies κ or R±
3�

(
ainc
�
, �

�

)
 at the generated frequencies 3κ, see Figure 3.

In the case of a decanalizing layer and under the condition of symmetry of the scattered energy 
R+
�

(
ainc
�
, �

�

)
= R−

�

(
ainc
�
, �

�

)
, there is a significant difference in the portion of generated energy 

R+3𝜅

(
ainc
𝜅
, 𝜙

𝜅

)
<< R−3𝜅

(
ainc
𝜅
, 𝜙

𝜅

)
 in the half-spaces above and below the layer, see Figure 3 (left). 

This can lead to a type-conversion effect in the oscillations of the radiation field U3κ. In the case of 
normal excitation, ϕκ = 0° of a decanalizing layer as described above the effect of type-conversion of 
the generated field U3κ is detected at the threshold amplitude ainc

�
= 23, where the condition of 

equality of the scattering coefficients R+
�

(
ainc
�
, �

�

)
= R−

�

(
ainc
�
, �

�

)
 is satisfied, see Figure 5 (left) 

and the intersection of the surfaces in Figure 3 (top left). The portion of generated energy W3�∕W�
 

increases with increasing ainc
�

 for a normal excitation ϕκ = 0°, see Figure 3 (left).

For a canalizing structure, at the scattering frequency the portion of reflected energy is less than 

the portion of transmitted energy R+
𝜅

(
ainc
𝜅
, 𝜙

𝜅

)
< R−

𝜅

(
ainc
𝜅
, 𝜙

𝜅

)
, and at the generation frequency 

the portion of radiated energy in the transmission zone slightly dominates the radiated energy in the 

reflection zone R+3�
(
ainc
�
, �

�

) ≤ R−3�
(
ainc
�
, �

�

)
, see Figure 3 (right). The maximal generation 

W3�∕W�
 is achieved if the amplitude ainc

�
 increases at incident angles ϕκ slightly above the canalizing 

angle (the angle of the greatest possible transparency of the structure at the scattering frequency 
κ), see Figure 3 (right).

4.2. Qualitative analysis of the generation properties of nonlinear layers
We discuss a possible mathematical model for the qualitative analysis of the generation properties 
of nonlinear decanalizing and canalizing layers. We consider the surfaces R+n�, R

−

n�, n = 1, 3 and 
W3�∕W�

 described previously in Section 4.1 as well as the characteristic properties of the scattering 
and generation of oscillations by nonlinear layers, see Figure 3. In Figure 6 (left and right) we depict 
the cross-sections of these surfaces with the planes φκ = 0° for a decanalizing layer and φκ = 60° for 
a canalizing layer.

The particular features of the dynamics of the scattering and generation characteristics of oscilla-
tions by the nonlinear layer are caused by the proximity of the eigenfrequencies κn of the linearized 
problems (7) to the scattering (excitation) frequencies �scat ≡ �

inc = � and to the generation fre-
quencies �gen = 3� of waves. The branches of the eigenfrequencies �n = �

(NL)
n

(
ainc
�

)
 of the nonlin-

ear layers with dielectric permittivities induced by the excitation field at the frequencies of scattering 
and generation are depicted by the graphs no. 5.1, 5.2, 6.1, 6.2 in Figure 7. In addition, the curves 
nos.  3.1, 3.2, 4.1, 4.2 show the values of the eigenfrequencies �n = �

(L)
n

(
ainc
�

)
= const of the 
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corresponding linear problems (for α ≡ 0). The eigenfrequencies �(L)
n  do not depend on the amplitude 

characteristics of the field, in particular, the equation lim
ainc
�
→0

�
(NL)
n

(
ainc
�

)
= �

(L)
n  holds, see Figure 7.

In the case of a canalizing/decanalizing layer the increase of the excitation amplitude ainc
�

 leads to 
an increase/decrease of Re

(
�
(NL)

1

(
ainc
�

))
, Re

(
�
(NL)

3

(
ainc
�

))
 (graphs no. 5.1, 6.1), decrease/increase of 

Im
(
�
(NL)

3

(
ainc
�

))
 (graphs no.  6.2) and increase/decrease–decrease/increase of Im

(
�
(NL)

1

(
ainc
�

))
 

(graphs no. 5.2), Figure 7 (left/right). The interval of monotonic decrease of the graph no. 5.2 is local-
ized in a range of amplitudes ainc

�
 which is determined by a closeness condition of the eigenfrequen-

cies to the frequencies of scattering and generation, see the amplitudes corresponding to the 
intersection of the graphs no. 5.1 with no. 1 and no. 6.1 with no. 2 in Figure 7 (right). In this range of 
amplitudes, an outburst of generation of energy in the third harmonic is observable, see graph no. 7 
in Figure 6 (right).

In order to describe the branches of the eigenfrequencies of the linearized problems, we use the 
concept of the Q-factor (Reed & Simon, 1978; Shestopalov & Sirenko, 1989; Vainstein, 1966; Voitovich, 
Katsenelenbaum, & Sivov, 1977)

It is convenient to perform the analysis of coupled regimes of the scattered and generated fields (3) 
induced by the dielectric permittivity (2) of nonlinear electrodynamic structures within the frame-
work of a self-consistent process of exchange of energy by the help of the concept of the relative 
magnitude of the radiated energy, see e.g. (11), (12), (13). Similarly, spectral approaches for the 
description of the generation of oscillations by nonlinear structures can be effectively applied if the 
concept of the Q-factor of the eigenregimes is used:

 

The Q-factors Q
�1

(
ainc
�

)
 and Q

�3

(
ainc
�

)
 corresponding to oscillations with eigenfrequencies as indi-

cated in Figure 7 (left and right) are shown in Figure 8 (top left and right). It also depicts the corre-

sponding values of the relative Q-factors Q
�1

(
ainc
�

)
∕Q

�3

(
ainc
�

)
, Figure 8 (bottom left and right). We 

can see the intervals of local decrease of the values Q
�1

(
ainc
�

)
∕Q

�3

(
ainc
�

)
 caused by the decrease of 

Q
�1

(
ainc
�

)
 at the scattering frequency. This is particularly emphasized in Figure 8 (right top and bot-

tom). The mentioned intervals of the local decrease of the relative Q-factor Q
�1

(
ainc
�

)
∕Q

�3

(
ainc
�

)
 can 

be correlated with a range of amplitudes of the incident field where an outburst of energy genera-
tion in the third harmonic is observable—compare the results of the calculations in Figure 8 (bottom 
left and right) with the graphes no. 5, 6, 7 in Figure 6 (left and right) and with the results in Figure 3 
(bottom left) for φκ = 0° and (bottom right) for φκ = 60°.

We note that the proposed approach to describe the outburst of energy of oscillations by means 
of the relative variation of the Q-factor (14) is quite effective. It can be successfully applied for both 
a suffiently weak and a strong generation of energy in ranges from a few percent (Figure 3, bottom 
left) to dozens percents (Figure 3, bottom right) of generated energy, respectively.

4.3. A three-layer nonlinear dielectric structure
Consider a nonlinear structure with the parameters: 

{
�
(L)(z) , �(z)

}
=
{{

�
(L) = 16, � = �1

}
, 

z ∈
[
−2��,−2��∕3

)
; 

{
�
(L) = 64, � = �2

}
, z ∈

(
−2��∕3, 2��∕3

)
; 

{
�
(L) = 16, � = �3

}
, 

z ∈
[
2��∕3, 2��

)}
 at δ = 0.5,  �1 = �3 = +0.01 , α2 = −0.01.

Q
�n
= −

Re
(
�n

)

2Im
(
�n

) .

(14)
Q

�1
∕Q

�3
=
Q

�1

(
ainc
�

)

Q
�3

(
ainc
�

) .
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The excitation takes place from above and below by electromagnetic fields at the basic frequency 
at incidence angles 

{
�
�
, 180◦ − �

�

}
 for amplitudes 

{
ainc
�
, binc

�

}
 accordingly. The Figures 9 and 10 

show the properties of the nonlinear layered structure at the parameters: � = �
inc = 0.25, 

�
�
∈
[
0◦, 90◦

)
, ainc

�
≠ 0, binc

�
= const and ainc2� = binc2� = ainc3� = binc3� = 0.

A three-layer structure consisting of a decanalizing layer which is located between two canalizing 
layers possesses novel properties of scattering and generation of oscillations. They partially resem-
ble those properties which are inherent decanalizing and canalizing layers. Thus, in the case of a 
one-sided excitation ainc

�
≠ 0, binc

�
= 0 investigated in the range of amplitudes ainc

�
∈
[
1, 38

]
 and 

incident angles �
�
∈
[
0◦ , 90◦

)
 of the layered structure the increase of the portion of generated 

energy W3�∕W�
 with increasing amplitude ainc

�
 is observed at normal excitation φκ = 0°, see Figure 9 

(top). This is typical also for decanalizing structures, see Figure 3 (left). Moreover, in the case under 
consideration, the increase of W3�∕W�

 is accompanied by an increase in the transparency of the 
layered structure. A canalization of energy is observed at the minimum value of the reflection coef-
ficient R+

�
= 0.0172 for the ainc

�
= 38 at normal excitation φκ = 0°, Figure 9 (top left). This is typical for 

Figure 9. The properties of the 
nonlinear structure at incidence 
angles 

{

�
�
, 180

◦

− �
�

}

 with 
�

�
∈

[

0
◦

, 90
◦
)

 for amplitudes 
{

a
inc

�
, b

inc

�

}

: (top left/right) 
a
inc

�
≠ 0, binc

�
= 0; (middle left/

right) ainc
�

= 38, binc
�

≠ 0; (bottom 
left/right) ainc

�
= b

inc

�
 here 

R
+

n�
= R

−

n�
, n = 1, 3.
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canalizing layers, Figure 3 (top right). The difference between the investigated situation and the 
numerical experiments for layers which canalize and decanalize energy is that the portion of energy 
generated in the region above the structure exceeds the portion of energy generated below the 
structure R+3𝜅

(
ainc
𝜅
, 𝜙

𝜅

)
> R−3𝜅

(
ainc
𝜅
, 𝜙

𝜅

)
, compare Figure 9 (top right) with Figure 3 (bottom left 

and right).

The energy characteristics for the case of a two-sided excitation ainc
�

= 38, binc
�

≠ 0 of the layered 

structure are depicted in Figure 9 (middle). Here, in the range of amplitudes 
{
ainc
�
, binc

�

} ||||ainc
�
=38, binc

�
∈[0, 65]

 

and angles 
{
�
�
, 180◦ − �

�

} |||�
�
∈[0◦ , 90◦)

, there are two local maxima of the portion of generated en-

ergy W3�∕W�
 corresponding to the incident angles 

{
�
�
, 180◦ − �

�

} |||�
�
=0◦

. The first of these corre-

sponds to a one-sided excitation with the amplitudes ainc
�

= 38, binc
�

= 0 at 
{
�
�
, 180◦ − �

�

} |||�
�
=0◦

, 

where W3�∕W�
= 0.1319, see Figure 9 (top and middle). The increase of the amplitude binc

�
 leads to the 

equality of the scattering R+
�
= R−

�
 and generating R+3� = R−3� characteristics at equal amplitudes of ex-

citation binc
�

= ainc
�

= 38 in the whole range of incident angles 
{
�
�
, 180◦ − �

�

} |||�
�
∈[0◦ , 90◦)

. This is due 

to the symmetry of both the excitation and the investigated structure. The maximum portion of gener-

ated energy W3�∕W�
||{��

, 180◦−�
�} |�

�
=57

◦

= 0.0078 for binc
�

= ainc
�

= 38 does not exceed 0.8%, see 

Figure 9 (middle and bottom). A further increase of binc
�

 leads to the violation of symmetry of excitation 

binc
𝜅

> ainc
𝜅

= 38. The properties of the scattering and generation characteristics change from 

R+n� ≥ (or ≤)R−n�, when binc
𝜅

< ainc
𝜅

= 38, to R+n� ≤ (or ≥)R−n�, when binc
𝜅

> ainc
𝜅

= 38, for n = 1, 3, see 

Figure 9 (middle).

The second local maximum W3�∕W�
= 0.0457 corresponds to a two-sided normal excitation {

�
�
, 180◦ − �

�

} |||�
�
=0◦

 with amplitudes ainc
�

= 38, binc
�

= 65, see Figure 9 (middle). Here the in-

crease of the generation R−3�, R
+

3�, W3�∕W�
 is caused by the observed canalizing properties of the 

layered structure near the minimum of the radiation coefficient R−3� = 0.2302 for ainc
�

= 38, 

binc
�

= 65 and 
{
�
�
, 180◦ − �

�

} |||�
�
=40◦

, see Figure 9 (middle).

Numerical results for the characteristics of scattering and generation of oscillations in the case of 
a two-sided 

{
�
�
, 180◦ − �

�

} |||�
�
∈[0◦ , 90◦)

 symmetric ainc
�

= binc
�

 excitation of the nonlinear layered 

structure are shown in Figure 9 (bottom). Here, equal values of the scattering and generation coef-
ficients can be observed R+n� = R−n�, n = 1, 3. This is due to the symmetry of both the excitation 
ainc
�

= binc
�

 and of the nonlinear dielectric structure under investigation with respect to the plane 
y = 0. Here, in the whole range of amplitudes ainc

�
, binc

�
∈
[
0, 75

]
 and angles �

�
∈
[
0◦ , 90◦

)
, we 

observe the following. The coefficient of the relative portion of scattered energy lies in the range 
0.4954 < R±

𝜅
≤ 0.5, the corresponding coefficient of generated energy R±

3𝜅
< 0.0046 does not ex-

ceed 0.46%, and the portion of the total generated energy W3𝜅∕W𝜅
< 0.0093 does not exceed 

0.93%, see Figure 9 (bottom).

The absolute values of the amplitudes of the total scattering |U(�;z)| and generation |||U
(
3�;z

)||| 
fields, for different variants of one-sided 

{
ainc
�
, binc

�
= 0

}
 and two-sided 

{
ainc
�
, binc

�

}
 normal {

�
�
, 180◦ − �

�

} |||�
�
=0◦

 excitation of the nonlinear structure, corresponding to some effects depict-

ed in Figure 9, are illustrated by the graphs no. 2 and no. 3 in Figure 10. They may be identified as 

oscillations of the types 
{
H0,0,4 and H0,0,9

}|||{ainc�
=38, binc

�
=0}

 (top left), 
{
H0,0,4 and H0,0,9

}|||{ainc�
=38, binc

�
=20}
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(top right), 
{
H0,0,3 and H0,0,9

}|||{ainc�
=38, binc

�
=30}

 (bottom left), and 
{
H0,0,3 and H0,0,9

}|||{ainc�
=38, binc

�
=38}

 

(bottom right). We mention a resonance effect of type-conversion of the total scattered field {
H0,0,4 and H0,0,9

}|||{ainc�
=38, binc

�
=0}

⇔

{
H0,0,3 and H0,0,9

}|||{ainc�
=38, binc

�
=38}

 for both a nonsymmetric 
{
ainc
�

= 38, binc
�

= 0
}

 and a symmetric 
{
ainc
�

= 38, binc
�

= 38
}

 excitation of the nonlinear layered 

structure.

The total scattered fields {|U(�;z)|} |
�(z)≡0 for the investigated variants of excitation of a linear 

structure are also shown. They can be related to oscillations of the types H0,0,4
|||{ainc�

=38, binc
�
=0}

 (top 
left), H0,0,3

|||{ainc�
=38, binc

�
=20}

 (close to the transition H0,0,4 ⇔ H0,0,3 at the inflection point z ≈ 1, 22, where 

|U(�;z)| ≈ 13.4321) (top right), H0,0,3
|||{ainc�

=38, binc
�
=30}

 (bottom left), and H0,0,3
|||{ainc�

=38, binc
�
=38}

 (bottom 

right), see graphs no. 0 in Figure 10. We detect an interference mechanism of resonant type-conver-
sion of oscillations H0,0,4

|||{ainc�
=38, binc

�
=0}

⇔ H0,0,3
|||{ainc�

=38, binc
�
=38}

, see graphs no. 0 in Figure 10.

The resonant type-conversion of oscillations, which is observed for the two-sided excitation of 
both linear and nonlinear structures, occurs if the symmetry of the excitation is violated. The funda-
mental difference in the occurrence of this effect between the nonlinear and the linear situations 
consists in the presence of the nonlinear part �(NL)n�  of the dielectric permittivity ɛnκ, n = 1, 3, see (2). 
The behavior of the quantity �(NL)n� = �n� − �

(L) can be estimated easily by the help of the graphs 
nos. 4, 5, 6, 7 and 1 in Figure 10. The graph no. 1 depicts the dielectric permittivity �(L) of a linear 
nonabsorbing Im

(
�
(L)
) ≡ 0 structure. The graphs nos. 4, 5, 6, 7 show the real and imaginary parts of 

the nonlinear dielectric permittivity ɛnκ, n = 1, 3, for the excitation variants under consideration, see 
Figure 10. In particular, Im

(
�
(NL)
�

)
 takes positive and negative values along the height of the nonlin-

ear layer, for all the considered excitation variants of the nonlinear structure. The variation of this 
quantity characterizes the energy consumption of the nonlinear medium which is spent for the third 
harmonic generation.

Figure 10. Curves: 0 – |U(�;z)| for 
�(z) ≡ 0, 1 – �(L),  
2 –  |U(�;z)|,  
3 –  |

|

U
(

3�;z
)

|

|

, 4 – Re
(

�
�

)

,  
5 –  Im

(

�
�

)

,  
6 – Re

(

�
3�

)

, 7 – Im
(

�
3�

)

≡ 0, at 
{

�
�
, 180

◦

− �
�

}

 with ϕκ = 0° and 
(top left): 

{

a
inc

�
= 38, b

inc

�
= 0

}

; 
(top right):  
{

a
inc

�
= 38, b

inc

�
= 20

}

; (bottom 
left): 

{

a
inc

�
= 38, b

inc

�
= 30

}

; 
(bottom right) 

{

a
inc

�
, b

inc

�

}

 with 
a
inc

�
= b

inc

�
= 38.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
et

sb
ib

lio
th

ek
 C

la
us

th
al

] 
at

 0
3:

43
 0

4 
A

pr
il 

20
16

 



Page 17 of 19

Angermann & Yatsyk, Cogent Physics (2016), 3: 1158342
http://dx.doi.org/10.1080/23311940.2016.1158342

The dependence of the nonlinear dielectric structure on the amplitude characteristics of the scat-
tered and generated fields together with a spectral approach to the analysis of the linearized prob-
lems near the critical points of the branches of the amplitude–phase dispersion can be used as the 
basis of numerical and analytical methods for the synthesis and analysis of nonlinear structures 
with anomalous scattering and generation properties.

The numerical results for the scattereing and generation of a wave package by a nonlinear cubi-
cally polarizable layer are obtained by means of the solution of the system of integral equations (4). 
Applying Simpson′s quadrature rule, the system (4) is reduced to a system of nonlinear algebraic 
equations (6). The numerical solution of (6) is carried out using a self-consistent iterative algorithm 
based on a block Jacobi method (Angermann & Yatsyk, 2011a, 2011b, 2012, 2013a, 2013b; 
Angermann, Yatsyk, et al., 2013; Angermann, Krevchenko, et al., 2013a, 2013b; Yatsyk, 2012, 2013). 
The spectral problems (7) are solved by the help of Newton′s method. In the investigated range of 
problem parameters, the dimension of the algebraic systems was 301 and 501 in the case of single-
layered and three-layered structures, respectively. The relative error of the calculations did not ex-
ceed 10−7.

4. Conclusion
The problem of scattering and generation of waves by an isotropic, nonmagnetic, linearly polarized, 
nonlinear dielectric structure consisting of a cubically polarizable medium is investigated in the 
range of resonance frequencies, where the excitation is induced by wave packets consisting of plane 
waves at multiple frequencies. In extension of our previous work, here the case of two-sided acting 
fields is treated. The mathematical model of the boundary value problem is transformed into a sys-
tem of one-dimensional nonlinear integral equations. The numerical solution of the problem is per-
formed by the help of quadrature formulas in conjunction with an iterative method, where at each 
step a linear system of equations is solved. The analytic continuation of the linearized nonlinear 
problems into the region of complex values of the frequency parameter allows to switch to the 
analysis of spectral problems. That is, the eigenfrequencies and the corresponding eigenfields of 
homogeneous linear problems with an induced nonlinear dielectric permittivity are to be deter-
mined. Single-layered structures with both negative and positive values as well as three-layer struc-
tures with piecewise constant positive–negative–positive values of the coefficient of the cubic 
susceptibility of the nonlinear medium are investigated. The layers under consideration have differ-
ent properties. In particular, nonlinear layers with a negative value of the cubic susceptibility show 
decanalizing properties, layers with a positive value of the cubic susceptibility—canalizing proper-
ties. The investigations were restricted to the third harmonic generation. The paper presents the 
results of the numerical analysis characterizing the scattering/generation and spectral properties of 
the considered structures. An effective way to describe the processes of generation of oscillations 
via the variation of the relative Q-factor of the eigenoscillations corresponding to the eigenfrequen-
cies of the scattering and generating structures, when the intensity of the excitation field changes, 
is given. Moreover, the proposed approach applies equally well for sufficiently weak/strong energy 
generation in ranges from a few percent to dozens percents of generated energy. For the first time, 
two-sided acting fields at the scattering frequency were taken into account and a type-conversion 
of the oscillations could be observed. The latter effect was observed at a symmetry violation of the 
nonlinear problem caused by different amplitudes of the excitation fields. This effect may serve as a 
basis for numerical and analytical methods for the synthesis and analysis of nonlinear structures in 
the vicinity of critical points of the amplitude–phase dispersion, similar to the approach developed in 
the papers (Shestopalov & Yatsik, 1997; Yatsyk, 2000, 2001). That is, mathematical models for the 
control of anomalous scattering and generation properties of nonlinear structures via the variation 
of amplitudes in a two-sided excitation of a nonlinear structure at scattering and generation fre-
quencies near the resonance frequencies of the linearized spectral problems can be created.
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