Untersuchung von Materialien zur Abdichtung des Kontaktbereichs
zwischen Streckenverschlusshbauwerken aus hydraulisch
abbindenden Baustoffen und dem Salzgebirge

Dissertation

zur Erlangung des Doktorgrades
der Ingenieurwissenschaften

Vorgelegt von:
M.Sc. Jonas Leonard Weber
aus Mainz

genehmigt von der
Fakultät für Energie- und
Wirtschaftswissenschaften der Technischen
Universität Clausthal

Tag der mündlichen Prüfung

25.06.2018
Vorsitzender der Promotionskommission: Prof. Dr.-Ing. Norbert Meyer
Hauptberichterstatter: Prof. Dr.-Ing. Oliver Langefeld
Mitberichterstatter: Prof. Dr.-Ing. habil. Uwe Düsterloh

Dissertation Clausthal 2018

D 104

© PAPIERFLIEGER VERLAG GmbH, Clausthal-Zellerfeld, 2018
Telemannstraße 1 · 38678 Clausthal-Zellerfeld
www.papierflieger.eu

Urheberrechtlich geschützt, alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Wege (Fotokopie, Mikrokopie) zu vervielfältigen.

1. Auflage, 2018

Mein besonderer Dank gilt Herrn Professor Dr.-Ing Oliver Langenfeld sowie Herrn Professor Uwe Düsterloh, für die persönliche Betreuung sowie zahlreiche Diskussionsrunden.

Danken möchte ich auch den Kollegen am Institut für Bergbau, für die Unterstützung während der Erstellung der Arbeit, sowie allen Probelesern.
Inhaltsverzeichnis

1 Einführung in den deutschen Endlagerbergbau ... 7
 1.1 Problemstellung der Arbeit ... 8
2. Aufbau eines Endlagers ... 12
 2.1 Mögliche Wirtsgesteine ... 12
 2.2 Grubengebäude ... 14
 2.3 Mehrbarrierensystem – Barrieren eines Endlagers ... 15
3. Geotechnische Barrieren - Streckenverschlussbauwerke ... 17
 3.1 Anforderungen an Streckenverschlussbauwerke.. 17
 3.2 Aufbau eines Streckenverschlussbauwerks .. 19
 3.3 Integrale Permeabilität/ Strömungsräume ... 20
 3.3.1 Salzgebirge .. 21
 3.3.2 Baustoff des Streckenverschlussbauwerks ... 24
 3.3.3 Kontaktbereich Baustoff/Gebirge ... 28
 3.4 Bildung Kontaktfuge / Schädigung des Kontaktbereichs .. 29
4. Injektionen ... 32
 4.1 Injektionen im Salz ... 33
 4.2 Anforderungen an Injektionsmaterialien im Salz ... 38
 4.3 Verfügbare Injektionsmaterialien für den Einsatz im Salz ... 43
 4.3.1 Partikelgestützte Injektionsmaterialien ... 46
 4.3.2 Partikelfreie Injektionsmaterialien ... 48
 4.4 Beständigkeit von Injektionsmaterialien unter salinaren Bedingungen 53
5 Laborative Charakterisierung der rheologischen Eigenschaften ausgewählter Injektionsmaterialien ... 57
 5.1 Aufbau der Messungen ... 57
 5.1.1 Viskositätsmessungen .. 57
 5.1.2 Rheologie – Marshtrichter .. 59
 5.1.3 Dichtemessungen ... 60
 5.1.4 Grenzflächenspannung ... 60
 5.1.5 Kontaktwinkel ... 62
 5.2 Durchführung von Messungen zur Bestimmung der rheologischen Eigenschaften ausgewählter
 Injektionsmaterialien ... 62
 5.2.1 Viskositätsbestimmung .. 63
 5.2.2 Rheologie – Marshtrichter .. 63
Abbildungsverzeichnis:

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Abb. 2:</td>
<td>Aufbau eines Endlagerbergwerks[13].</td>
</tr>
<tr>
<td>Abb. 3:</td>
<td>Vereinfachtes Prinzip eines Streckenverschlussbauwerks mit den einzelnen Funktionselementen[24].</td>
</tr>
<tr>
<td>Abb. 4:</td>
<td>Permeabilitätsmessungen eines Streckenverschlussbauwerks. Die Permeabilitätsmesswerte im rechten Bereich der Abbildung wurden im Steinsalz, dem Kontaktbereich Bauwerk/Gebirge sowie im Baustoff ermittelt und zeigen dass die Kontaktfuge den Bereich mit der höchsten Permeabilität aufweist[101].</td>
</tr>
<tr>
<td>Abb. 5:</td>
<td>Schwindmaße des Salzbetons M2 in Abhängigkeit der Abbindezeit der Prüfkörper. Die Proben Klima 20/40 wurden bei 20°C und 40 % relativer Luftfeuchtigkeit gelagert und die Proben Klima 20/65 bei 20°C und 65 % relativer Luftfeuchtigkeit[28].</td>
</tr>
<tr>
<td>Abb. 6:</td>
<td>Siebendurchgangslinie des Hartbitumens</td>
</tr>
<tr>
<td>Abb. 7:</td>
<td>Modellhafte Darstellung des Ablaufes einer Wasserglasinjektion in eine Wegsamkeit im Steinsalz. Die fortschreitende Injektion dringt immer weiter ein, bis die komplette Wegsamkeit gefüllt ist. Im Kontakt mit dem Steinsalz setzt eine Gelierung des Wasserglases ein, die im Modell durch die unterschiedlich großen Kügelchen dargestellt ist[53].</td>
</tr>
<tr>
<td>Abb. 10:</td>
<td>Fließschema zur Auswahl des geeigneten Injektionsmaterials in Abhängigkeit von der mineralogischen Zusammensetzung des Gebirges am Barrierenstandort sowie dem Baustoff des Streckenverschlussbauwerks.</td>
</tr>
<tr>
<td>Abb. 11:</td>
<td>Platte-Platte Rheometer[73; 74]</td>
</tr>
<tr>
<td>Abb. 12:</td>
<td>Links: Rheometer Haake Mars III der Firma Thermo Scientific. Rechts: Detailaufnahme der Temperier-Einheit sowie des Probenbechers und des Titandrehkörpers.</td>
</tr>
<tr>
<td>Abb. 13:</td>
<td>Dichtebestimmungsset YDK 01 der Firma Sartorius[78]</td>
</tr>
<tr>
<td>Abb. 14:</td>
<td>Aufbau einer Wilhelmy-Waage</td>
</tr>
<tr>
<td>Abb. 15:</td>
<td>Links: Benetzte Wilhelmy-Platte. Rechts: Wilhelmy-Platte der Länge b und Breite a die mit der Kraft P in der ursprünglichen Lage gehalten wird.</td>
</tr>
<tr>
<td>Abb. 16:</td>
<td>Kontaktwinkelmessgerät des Typs OCA 15.</td>
</tr>
<tr>
<td>Abb. 17:</td>
<td>Mittelwerte der Viskositätsmessungen mit IM 4+ bei 30 und 40° C.</td>
</tr>
<tr>
<td>Abb. 18:</td>
<td>Definition von Ansteifen, Erstarren und Erhärten von Zement und Beton[79].</td>
</tr>
</tbody>
</table>
Abb. 19: Mittelwerte der Viskositätsmessungen mit Ultrafin 12 bei 30 und 40° C. Die grüne als auch die violette Kurve dokumentieren die Mittelwerte der Messungen der mit NaCl-haltiger Lösung angemischten Suspension dar................................. 67
Abb. 20: Mittelwerte der Viskositätsmessungen mit dem 2K-Bitumen bei 30 und 40° C....................... 68
Abb. 21: Mittelwerte der Viskositätsmessungen mit Wasserglas der Grädigkeit 37/40 bei 30 und 40° C ... 69
Abb. 22: Anhaftungen von vergelten Wasserglas am Drehkörper des Rheometers 70
Abb. 23: Mittelwerte der Viskositätsmessungen mit Denepox 40 bei 30 und 40° C............................... 71
Abb. 24: Zusammenstellung der Mittelwerte der Viskositätsmessungen der partikelgestützten Injektionsmittel ... 72
Abb. 25: Zusammenstellung der Mittelwerte der Viskositätsmessungen der partikelfreien Injektionsmittel ... 73
Abb. 26: Unterschiede in der Viskosität von Wassergläsern in Abhängigkeit von der Temperatur sowie ihrem Wasseranteil (W_{wapp}). Unterstehend ist die Dichteänderung von Wassergläsern mit unterschiedlichen Wasseranteilen dargestellt[52].. 74
Abb. 27: Zusammenfassung der Oberflächenspannung der untersuchten Injektionsmittel bei 30 und 40° C... 76
Abb. 28: Häufigkeit der gemessenen Kontaktwinkel von Wasserglas bei 30 und 40° C...................... 77
Abb. 29: Häufigkeit der gemessenen Kontaktwinkel von Ultrafin 12 bei 30 und 40° C....................... 77
Abb. 30: Darstellung der Eindringtiefe der unterschiedlichen Injektionsmittel in den zwei verschiedenen Zeiträumen in eine horizontale Kapillare mit einem Durchmesser von 100 µm ... 82
Abb. 32: Anbindung der Injektionsleitung an den Kontaktbereich zwischen Beton und Salzkern 86
Abb. 33: Schematische Darstellung des Spaltzugversuchs nach DIN EN 12390-6 [95] 87
Abb. 34: Rissentwicklung im Spaltzugversuch nach Castro-Montero[96] .. 87
Abb. 37: Axialdruck gegen Verformung für den bGZ-Salzbeton. .. 89
Abb. 38: Axialdruck gegen Verformung für den Magnesiabinder MB10. ... 90
Abb. 39: Axialdruck gegen Verformung für alle durchgeführten Spaltzugversuche (grün bGZ-Salzbeton und rot Magnesiabinder MB10) ... 91
Abb. 40: Zusammenstellung der injizierten Mengen an Ultrafin 12 (UF) und Wasserglas (WG) in Abhängigkeit von der Länge der Injektionsleitung. Die unterschiedlichen Kombinationen aus dem Beton des Probenkörpers sowie den eingesetzten Injektionsmitteln sind unterschiedlich gekennzeichnet ... 93
Abb. 41: Links: Übersichtsdarstellung eines Probenkörpers mit den beiden stirnseitig befestigten Schraubpackern und den 3 parallel zur Stirnseite angeordneten Schnitten. Rechts: Beispielhafte Darstellung der vier Abschnitte eines Schnittes die zur Auswertung herangezogen werden. ... 95

Abb. 44: 1: Schnitt durch einen Probenkörper bei dem das Steinsalz großflächig mit Ultrafin 12 injiziert wurde. 2: Ultrafin 12 entlang von Korngrenzen zwischen einzelnen Steinsalzkristallen. 3 und 4: Flächig, rissartige mit Ultrafin 12 injizierte Strukturen im Steinsalz. 5 und 6: Flächige, rissartige mit Wasserglas 37/40 injizierte Struktur im Steinsalz. .. 100

Abb. 48: Darstellung des in den geschädigten Bereich und das Steinsalz injizierten Injektionsmittels für die unterschiedlichen Materialkombinationen in Abhängigkeit des in den jeweiligen Probenkörper injizierten Volumens. .. 107
Tabellenverzeichnis:

Tab. 1: Endlagerrelevante Eigenschaften potenzieller Wirtsgesteine[19] .. 13
Tab. 2: Vorstellung der im Salinar am häufigsten vorkommenden leichtlöslichen Salzminerale 21
Tab. 3: Gehalte der gelösten Stoffe in IP21 Lösung und gesättigter NaCl-Lösung[56] 22
Tab. 4: Zusammenstellung von Baustoffen die für die Errichtung von Streckenverschlussbauwerken im Salinar prinzipiell zur Verfügung stehen (Nach[14]).. 24
Tab. 5: Rezeptur für jeweils 1 m³ des bGZ-Salzbetons sowie des Salzbetons M2 25
Tab. 6: Rezeptur des Magnesiabinders MB10[60] .. 25
Tab. 7: Unterschiedliche Materialeigenschaften des Salzbetons M2 sowie des Magnesiabinders MB10. .. 26
Tab. 8: Ermittelte Zugfestigkeit von Salzbeton M2 sowie die Haftzugfestigkeit zwischen Steinsalz und dem Salzbeton M2 in Abhängigkeit des Abbindealters[26].. 31
Tab. 9: Zusammenstellung von Erfahrungsberichten zu Injektionsmaßnahmen, die im Kontakt mit Salz durchgeführt wurden.. 35
Tab. 10: Zusammenstellung von In-Situ und Laborversuchen zur Untersuchung der Kontaktfuge sowie zu Anforderungen an Injektionsmittel und Baustoffe für den Einsatz im Salinar. 35
Tab. 11: Zusammenstellung der in den Literaturstellen angeführten Anforderungen an Baustoffe und Injektionsmittel für den Einsatz im Salinar. Die einzelnen Anforderungen wurden für eine verbesserte Übersichtlichkeit 5 übergeordneten Gruppen zugeordnet. 39
Tab. 12: Zusammenstellung der fünf ausgewählten Injektionsmittel... 45
Tab. 13: Informationen zur Zusammensetzung und zum Mischungsverhältnis von „IM 4+“[62] 46
Tab. 14: Rheologische Daten von Ultrafin 12 bei unterschiedlichen Suspensionsdichten[63]. Die dargestellten Werte beziehen sich auf Suspensionen die mit Leitungswasser hergestellt wurden ... 47
Tab. 15: Kennwerte von Natronwassergläsern mit verschiedenen Grädigkeiten [110]. 49
Tab. 16: Marshzeiten (in Sekunden) der Untersuchten Injektionsmittel.. 74
Tab. 17: Dichte der verschiedenen Injektionsmittel bei 30 und 40° C ... 75
Tab. 18: Mittelwerte und Einzelmesswerte der Kontaktwinkelmessungen 78
Tab. 19: Wasserglas: Kontaktwinkel, Einzelmessungen und Mittelwerte .. 79
Tab. 20: Zusammenstellung der für die Berechnung der Eindringtiefe in eine horizontale, zylindrische Kapillare verwendeten rheologischen Materialkennwerte ... 81
Tab. 21: Übersicht der pro cm des Salzkerns injizierten Volumina des jeweiligen Injektionsmittels. Sowie die prozentuale Abweichung der unterschiedlichen Baustoffe des Streckenverschlussbauwerks, Injektionsmittel sowie den unterschiedlichen Kombinationen aus beiden Materialien zum Gesamt Durchschnitt (Dies entspricht dem Durchschnittswert aller Injektionsprobenkörper außer der Nummer 12, da hier eine Injektion über die gesamte Länge nicht möglich war) .. 94
Tab. 22: Tabellarische Auswertung des mit Ultrafin 12 injizierten Probenkörpers Nummer 2 96
Einführung in den deutschen Endlagerbergbau

Die anfallenden radioaktiven Abfälle gleich unterscheiden sich bezüglich ihrer Halbwertszeiten, der Art und der Energie der emittierten Strahlung. Die Wärmeentwicklung ist ein Charakterisierungsmerkmal, das insbesondere bei der Suche nach geeigneten Möglichkeiten zur Endlagerung betrachtet werden muss. Daher werden die in Deutschland anfallenden radioaktiven Abfälle, in zwei Gruppen unterteilt[3]:

Abfälle mit vernachlässigbarer Wärmeentwicklung: „Der Begriff „radioaktive Abfälle mit vernachlässigbarer Wärmeentwicklung“ wurde im Rahmen der Planungsarbeiten für das Endlager Konrad quantifiziert. Diesen Arbeiten lag zugrunde, dass die untätige vorherrschenden Temperaturverhältnisse durch die endgelagerten Abfallgebinde nur unwesentlich beeinflusst werden sollten. Die Umsetzung dieser Planungsvorgabe führte zu der Festlegung, dass die durch die
Zerfallswärme der in den Abfallgebinden enthaltenen Radionuklide verursachte Temperaturerhöhung des Wirtsgesteins im Mittel 3 Grad (Kelvin) nicht überschreiten darf. Dieser Wert entspricht der natürlichen Temperaturdifferenz bei einem Tiefenunterschied von 100 Meter in Bergwerken. Er ist - verglichen mit der durch die Bewetterung (Belüftung des Bergwerkes) verursachten Temperaturveränderung - gering. Das Wirtsgestein wird durch die kühlere zugeführte Luft aus der Bewetterung bereits deutlich größeren Temperaturschwankungen ausgesetzt. Die Temperaturdifferenz von 3 Kelvin entspricht einer mittleren Wärmeleistung von etwa 200 Watt je Kubikmeter Abfall.” [3]

Wärmeentwickelnde Abfälle: Wärmeentwickelnde Abfälle haben eine höhere Aktivitätskonzentration als die radioaktiven Abfälle mit vernachlässigbarer Wärmeentwicklung und können eine Wärmeleistung von deutlich über 200 Watt pro Kubikmeter Abfall aufweisen [3].

Im internationalen Sprachgebrauch werden die wärmeentwickelnden Abfälle auch als HAW-Abfälle (high active waste) bezeichnet. Sowohl in Bezug auf das Volumen der Abfälle als auch bezüglich der Aktivität gibt es große Unterschiede zwischen den beiden Gruppen. Die für Deutschland insgesamt anfallenden etwa 28.000 Kubikmeter[4] (Abfallgebinde-Volumen) wärmeentwickelnde Abfälle weisen etwa 99,9 Prozent[5] der Aktivität der radioaktiven Abfälle auf. Die restlichen 0,1 % der Aktivität entfallen auf die vom Bundesamt für kerntechnische Entsorgungssicherheit (BFE) bis zum Jahr 2080 erwarteten 304.000 Kubikmeter Abfälle mit vernachlässigbarer Wärmeentwicklung[4]. Bei dieser Abschätzung werden keine Abfälle aus einer Rückholung aus der Schachtanlage Asse II betrachtet, was zu einer deutlichen Erhöhung des anfallenden Abfallvolumens um bis zu 275.000 Kubikmeter führen kann[6].

1.1 Problemstellung der Arbeit

Eine der künstlichen Barrieren stellen Streckenverschlussbauwerke dar, die die horizontalen Verbindungsstrecken zwischen den Einlagerungsbereichen und den Schächten des Endlagerbergwerks nach der Einlagerung verschließen sollen. Durch die Errichtung der Streckenverschlussbauwerke soll ein möglicher Zufluss von Lösungen aus dem Bereich des Schaches in die Einlagerungsbereiche sowie
ein möglicher späterer Austritt dieser gegebenenfalls kontaminierten Lösungen aus den Einlagerungsbereichen verhindert werden. Um diese Funktion ausüben zu können, müssen die Streckenverschlussbauwerke eine geringe querschnittsgemittelte Permeabilität aufweisen[8]. Diese drei Betrachtungsräume, die bei der Ermittlung der integralen Permeabilität herangezogen werden, sind der Baustoff des Streckenverschlussbauwerks, der Kontaktbereich zwischen Streckenverschlussbauwerk und dem Salzgebirge sowie die konturnahe Auflockerungszone.

Bereiche mit erhöhten Permeabilitäten in Streckenverschlussbauwerken können, auch wenn diese lokal begrenzt sind, zu einer Verminderung der Wirksamkeit des Streckenverschlussbauwerks aus den folgenden Gründen führen:

- Nicht Erreichen des Permeabilitätszieles, da durch die lokal erhöhte Permeabilität die integrale Permeabilität (Baustoff, Kontaktbereich und ALZ) erhöht wird.

Für die Injektion von Wegsamkeiten im Gebirge gibt es zahlreiche Baustoffe die routinemäßig im Tiefbau, Spezialtiefbau und Tunnelbau eingesetzt werden. Spezielle Materialien, die explizit für den Einsatz im Kontakt mit salinaren Lösungen und dem Salzgebirge entwickelt wurden, gibt es jedoch nur
wenige. Darüber hinaus gibt es durch den geplanten Einsatz im Endlagerbergbau weitere spezifische Anwendungsaufgaben, die in den obengenannten Einsatzbereichen durch die Injektionsmittel erfüllt werden müssen. Daher stehen wenige und nicht so umfangreich wie üblich erforschte Injektionsmittel für diese Aufgabenstellung zur Verfügung.

- die Öffnungsweite der Wegsamkeiten im Kontaktbereich
- die strukturelle Beschaffenheit der zu injizierenden Wegsamkeiten
- die vom Baustoff an das umliegende Gebirge abgegebene Feuchtigkeit
- chemische Interaktionen zwischen dem Injektionsmittel, dem anstehenden Salz und dem Baustoff des Streckenverschlussbauwerks

Daher sind neben Laborversuchen auch anwendungsbezogene Injektionsversuche mit den geeignetem Injektionsmaterialien im Kontakt mit üblichen Baustoffen für Streckenverschlussbauwerke und Steinsalz von Bedeutung, um das Eindringverhalten beurteilen zu können. Dies gilt insbesondere für Injektionsmaterialien wie das Wasserglas, die im Kontakt mit Steinsalz in neuartigen Injektionsverfahren erprobt werden (einphasig ohne Härtemittel). Daher sollen im Rahmen dieser Arbeit sowohl Laborversuche als auch Injektionsversuche durchgeführt werden, wobei die folgenden Zielstellungen nähergehend betrachtet werden:

- Erfassung wichtiger rheologischer Materialkennwerte ausgewählter Injektionsmaterialien unter Laborbedingungen für bergbauphysiche Temperaturen von 30 bzw. 40° C
- Ermittlung des theoretischen Eindringverhaltens in Wegsamkeiten mit geringen Öffnungsweiten basierend auf den ermittelten rheologischen Kennwerten.
- Erweiterung des Kenntnisstandes zum Einfluss des Abbindeverhaltens ausgewählter Baustoffe für Streckenverschlussbauwerke auf MgO- und Zementbasis auf die Ausbildung eines geschädigten Kontaktbereichs zwischen Baustoff und Steinsalz im Spaltzugversuch.
- Vergleich unterschiedlich ausgebildeter Kontaktfugen hinsichtlich des Eindringverhaltens von Injektionsmitteln im Kontaktbereich zwischen Sorelbeton bzw. Salzbeton und Steinsalz.
- Vertiefung des Kenntnisstandes zu Natronwasserglasinjektionen als Einphaseninjektion im Kontakt mit Steinsalz, insbesondere des Eindringverhaltens.

Um diese Zielstellungen untersuchen zu können, werden zu Beginn Anforderungen an Injektionsmittel zur Injektion von Wegsamkeiten im Kontaktbereich zwischen Baustoffen für Streckenverschlussbauwerke und dem Salzgebirge in Endlagerbergwerken erarbeitet, anhand derer nachfolgend als geeignet erachtete Injektionsmittel ausgewählt werden. Für die ausgewählten Injektionsmittel werden rheologischen Kennwerte im Labor ermittelt, anhand derer das theoretische Eindringverhalten berechnet wird. Das theoretische Eindringverhalten dient nachfolgend der Auswahl
von Injektionsmitteln für die anwendungsbezogenen Injektionsversuche an einer künstlich mittels Spaltzugversuch erzeugten Kontaktfuge.

2. Aufbau eines Endlagers

2.1 Mögliche Wirtsgesteine

Dem Wirtsgestein des Endlagers, in dem der einschlusswirksame Gebirgsbereich liegt, kommt die Aufgabe zu, über geologische Zeiträume den sicheren Einschluss der eingelagerten Abfälle zu gewährleisten[16].

International sind drei verschiedene Wirtsgesteine für die Errichtung von HAW Endlagern anerkannt, die jeweils sehr unterschiedliche Eigenschaften aufweisen. Als geeignet werden die in Tab. 1 aufgeführten Gesteine Steinsalz, Ton/Tonstein sowie Kristallinge (z.B. Granit) angesehen. Alle drei Wirtsgesteine sind im Grundsatz geeignet, den sicheren Einschluss von radioaktiven Abfällen zu gewährleisten, jedoch unterscheiden sie sich hinsichtlich einzelner Eigenschaften, was bei der Einlagerung oder der Errichtung der Grubenbaue des Endlagerbergwerks zu beachten ist.
Tab. 1: Endlagerrelevante Eigenschaften potenzieller Wirtsgesteine[19]

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Steinsalz</th>
<th>Ton/Tonstein</th>
<th>Kristallingeinstein (z. B. Granit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperaturbrüftfähigkeit</td>
<td>hoch</td>
<td>gering</td>
<td>mittel</td>
</tr>
<tr>
<td>Durchlässigkeit</td>
<td>praktisch undurchlässig</td>
<td>sehr gering bis gering</td>
<td>sehr gering (ungekühlt) bis durchlässig (gekühlt)</td>
</tr>
<tr>
<td>Festigkeit</td>
<td>mittel</td>
<td>gering bis mittel</td>
<td>hoch</td>
</tr>
<tr>
<td>Verformungsverhalten</td>
<td>viskos (Kriechen)</td>
<td>plastisch bis spröde</td>
<td>spröde</td>
</tr>
<tr>
<td>Hochraumstabilität</td>
<td>Eigenstabilität</td>
<td>Ausbau notwendig</td>
<td>hoch (ungekühlt) bis gering (stark gekühlt)</td>
</tr>
<tr>
<td>In-situ Spannungen</td>
<td>lithostatisch isotrop</td>
<td>anisotrop</td>
<td>anisotrop</td>
</tr>
<tr>
<td>Lösungsverhalten</td>
<td>hoch</td>
<td>sehr gering</td>
<td>sehr gering</td>
</tr>
<tr>
<td>Sorptionsverhalten</td>
<td>sehr gering</td>
<td>sehr hoch</td>
<td>mittel bis hoch</td>
</tr>
<tr>
<td>Temperaturbelastbarkeit</td>
<td>hoch</td>
<td>gering</td>
<td>hoch</td>
</tr>
</tbody>
</table>

Die Auswahl des Wirtsgesteins für ein Endlager erfolgt oftmals anhand der landestypischen geologischen Gegebenheiten. So stellt die Endlagerung im Kristallin in Deutschland eine große Herausforderung dar, da es kaum ausreichend große, zusammenhängende geeignete Flächen dieses Gesteins gibt. Sowohl Tonstein als auch Steinsalz kommen in Deutschland in großflächigen, homogenen Formationen, die eine Endlagerung ermöglichen, vor. Beide Gesteinsformationen werden hinsichtlich der Endlagerung wärmeentwickelnder radioaktiver Abfälle eingehend untersucht.

2.2 Grubengebäude

Das Versetzen der Zugangsstrecken sowie die Errichtung der Strecken- und Schachtverschlüsse ist Teil der Umsetzung des Mehrbarrierensystems, dass den sicheren Einschluss der radioaktiven Abfälle über geologische Zeiträume realisieren soll.
2.3 Mehrbarrierensystem – Barrieren eines Endlagers

Damit die einzelnen Barrieren des Mehrbarrierensystems ihre Funktion erfüllen können, müssen diese nachfolgende grundsätzliche Anforderungen erfüllen [24]:

- Durch die Barrieren muss sichergestellt werden, dass aus dem Endlager kein unzulässiger Austritt radioaktiver Stoffe in die Biosphäre erfolgt. Im Hinblick auf mögliche Schwächen einzelner Barrieren sowie realistischerweise anzunehmende Veränderungen ihrer Wirksamkeit, muss das Mehrbarrierensystem insgesamt ausreichende Sicherheitsreserven aufweisen.
- Die Wirksamkeit der Barrieren darf nicht von einer Instandhaltung oder von Kontrollen bzw. Instandhaltungsmaßnahmen in der Nachbetriebsphase abhängen.
- Das Endlager ist am Ende der Betriebsphase stillzulegen. Es ist ein Verfüll- und Verschließkonzept zu erstellen, das die Anforderungen, die sich insbesondere aus der Standsicherheit und der Langzeitsicherheit ergeben, erfüllt.
- Der Antragssteller hat die Barrierenwirksamkeit der technischen Barrieren in einer Langzeitprognose unter Berücksichtigung der in der geologischen Langzeitprognose ermittelten Entwicklung des geologischen Barrierensystems zu beschreiben und zu bewerten.

Das Mehrbarrierensystem setzt sich aus insgesamt aus vier Barrieren zusammen:

- die geologische Barriere,
- die geotechnischen Barrieren,
- der in das Grubengebäude eingebrachte Salzgrusversatz
- die technischen Barrieren.

Die unterschiedlichen Barrieren werden nachfolgend näher beschrieben.

Geologische Barriere:

Salzgrusversatz:

Technische Barrieren:

Die Endlagerbehälter, in denen die HAW Abfälle eingelagert werden, stellen die technische Barriere dar [108]. Die Endlagerbehälter müssen lediglich für den Zeitraum, bis die Wirksamkeit anderer Barrieren gegeben ist, die geforderte Schutzfunktion gewährleisten. Im Wesentlichen dienen die Endlagerbehälter (Technische Barriere) somit der sicheren Handhabung der Abfälle während der Betriebsphase [99].

Geotechnische Barrieren:

Beim Abteufen der Schächte werden lokal die geologischen Barrieren des Endlagerbergwerks durchörtert und somit in ihrer Funktion beeinträchtigt [15]. Im Übergangszeitraum bis die geologische Barriere wieder intakt ist, kommt den geotechnischen Barrieren die Aufgabe des Abdichtens der eingelagerten Abfälle gegen Zuflüsse von der Biosphäre zu [5].

Die Streckenverschlussbauwerke haben die Aufgabe, den sicheren Einschluss der radioaktiven Abfälle bis zum Zeitpunkt, ab dem der Salzgrusversatz hinreichend kompaktiert ist und den sicheren Einschluss der Abfälle ermöglicht zu gewährleisten[108]. Somit kommt den Streckenverschlussbauwerken die Aufgabe der Abdichtung zu, bis zu dem Zeitpunkt, ab dem die Langzeitdichtelemente in den Strecken (Salzgrus) funktional sind. Das bedeutet, dass insbesondere in den ersten Jahrhunderten bis Jahrtausenden nach der Einlagerung der Abfälle der sichere Einschluss der Abfälle im wesentlichen Maße durch die Funktionstüchtigkeit der Streckenverschlussbauwerke erreicht wird.
3. Geotechnische Barrieren - Streckenverschlussbauwerke

Im Folgenden wird näher auf die geotechnischen Barrieren eingegangen.

Die geotechnischen Barrieren haben zusammen mit dem Versatz in den Strecken zwischen Einlagerungsbereich und den Schächten des Endlagerbergwerks die Aufgabe, den Zutritt von Lösungen über den Schacht und die Strecken zu den endgelagerten Abfällen sowie die Migration von ausgepressten, gegebenenfalls kontaminierten Lösungen zu verhindern [99].

Da der Salzgrus infolge der Konvergenz nach einem gewissen Zeitraum vergleichbare Eigenschaften wie Steinsalz aufweist, müssen die Streckenverschlussbauwerke den sicheren Einschluss der Abfälle lediglich im Zeitraum bis zum Erreichen des sicheren Einschlusses durch den nach hinreichender Kompaktion als technisch dicht erachteten Salzgrusversatz gewährleisten (ungestörte Endlagerentwicklung) [108]. Im Falle einer gestörten Endlagerentwicklung kommt es zu einem Laugenzutritt an die eingelagerten Abfälle, bevor der Salzgrus hinreichend kompaktiert wurde [108].

Damit der sichere Einschluss der eingelagerten Abfälle sowohl bei einer gestörten als auch bei einer ungestörten Entwicklung des Endlagers gewährleistet ist, müssen die Streckenverschlussbauwerke eine Reihe von Anforderungen erfüllen.

3.1 Anforderungen an Streckenverschlussbauwerke

Das Forschungsvorhaben ISIBEL diente der Überprüfung und Bewertung des Instrumentariums für eine sicherheitliche Bewertung von Endlagern für HAW. Hauptsächlich diente das Projekt dazu, basierend auf dem Stand von Wissenschaft und Technik zu bewerten, inwieweit die Nachweise zur technischen Realisierbarkeit sowie der Endlagersicherheit geführt werden können. Im Rahmen von ISIBEL wurden an die im Endlagerbergwerk zu errichtenden Streckenverschlussbauwerke Anforderungen gestellt. Die aufgestellten Anforderungen definieren Rahmenbedingungen, die bei der Errichtung von Streckenverschlussbauwerken Beachtung finden müssen, damit diese funktionstüchtig sind. Die im Forschungsvorhaben ISIBEL aufgeführten Anforderungen wurden zur besseren Übersicht gruppiert. Nachfolgend sind die in den sechs Gruppen zusammengestellten Anforderungen an Streckenverschlussbauwerke aufgeführt:

Allgemeine Anforderungen

- Diversität: Das Streckenverschlussbauwerk soll aus einem oder mehreren Dichtelementen bestehen, deren Art, Position und eingesetzten Baumaterialien in Abhängigkeit der Standortbedingungen abzustimmen sind [99].
- Bidirektionalität: Das Bauwerk muss sowohl gegenüber aus dem Schachtbereich als auch gegenüber aus dem Endlagerbereich zutretenden Fluiden dicht sein [108].
- Langfristig immer sicherer Zustand hinsichtlich Dichtigkeit und Standsicherheit (positiv überkritisches Verhalten) [24].
Anforderungen an den Funktionszeitraum

- Das Streckenverschlussbauwerk muss möglichst frühzeitig während der Betriebsphase errichtet werden, um zu Beginn der Nachbetriebsphase die Funktionalität gewährleisten zu können [24].
- Für jede Barriere muss im Rahmen der Langzeitsicherheitsanalyse der Nachweis der Dauerhaftigkeit geführt werden [99].

Anforderungen an die Herstellung

- Mindestlänge für Barrieren: 15 Meter. Die Länge ist abhängig von den geologischen Verhältnissen im Einlagerungsbereich [99].
- Das Streckenverschlussbauwerk muss ein statisches Widerlager zur Aufnahme von horizontalen Drücken sowie des Gebirgsdruckes aufweisen [99].
- Das Streckenverschlussbauwerk muss im Rückbau (einseitiger Zugang) erstellbar sein [24].
- Erstellbarkeit in einem qualitätsgesicherten Verfahren zur Gewährleistung der Standsicherheit und technisch dichten Herstellung [24].
- Einfache Wirkprinzipien der Bauteile [24].
- Erprobte Komponenten/ Bauteile [24].
- Wartungsfreie Auslegung [24].

Mechanische Anforderungen

- Für jede geotechnische Barriere muss im Rahmen der Langzeitsicherheitsanalyse der Nachweis der Standsicherheit sowie der Rissbeschränkung geführt werden [99].
- Mechanische Standsicherheit gegenüber dem Gebirgsdruck [24], [108].
- Mechanische Standsicherheit gegenüber zutretenden Lösungen [24], [108].
 o Maximaler biosphärenseitige Fluiddruck = hydrostatischer Laugendruck [108].
 o Maximaler endlagerseitiger Laugendruck (theoretisch; bei impermeablen Verschluss) = Petrostatischer Druck [108].

Anforderungen an den Hydraulischen Widerstand (Permeabilität)

- Die Vorgaben an den hydraulischen Widerstand der Barriere werden anhand von Radionuklidtransportberechnungen, die im Rahmen der radiologischen Langzeitsicherheitsanalyse durchgeführt werden, ermittelt [99].
- Die Anforderungen an den erforderlichen hydraulischen Widerstand sowie die Lebensdauer der Schacht- und Streckenverschlüsse ergeben sich aus dem Kompaktionsverhalten des in den Strecken eingebrachten Salzgrusversatzes [99].
- Bidirektionale: Das Bauwerk muss sowohl gegenüber aus dem Schachtbereich als auch aus dem Endlagerbereich zutretenden Fluiden dicht sein [108].
- Technisch dicht gegenüber Lösungen (im Störfallszenario) [24].
- Bei einer ungestörten Endlagerentwicklung ergeben sich nach dem Ende der Versatzkompaktion keine Anforderungen an die Dichtwirkung des Streckenverschlussbauwerks [108].
- Im Falle einer gestörten Entwicklung (kein sicherer Einschluss/ Laugenzutritt an die Abfälle) sind durch die hydraulischen Widerstände der Strecken- und Schachtverschlüsse die Volumenströme an kontaminiertem Lauge derart zu minimieren, dass die radiologischen Schutzziele über den gesamten Nachweiszeitraum eingehalten werden [108].

Chemische Anforderungen

- Die eingesetzten Baustoffe müssen unter den im Endlager herrschenden Bedingungen langfristig beständig sein [99], [24].
- Langzeitbeständigkeit der Baumaterialien gegenüber korrosiven Lösungen und Gasen [24].

Neben den Anforderungen an die Errichtung sowie die Materialeigenschaften des Streckenverschlussbauwerks beeinträchtigen auch die Auswahl des Bauwerksstandorts sowie dessen Aufbau maßgeblich das Erreichen des sicheren Einschlusses der eingelagerten Abfälle im Zeitraum bis zum Erreichen der Dichtigkeit des Salzgrusversatzes. Daher können detailliertere Anforderungen an die geotechnischen Barrieren erst aufgestellt werden, wenn die Salzgruskompaktion hinreichend bekannt und prognostizierbar ist, sowie die Verhältnisse am Barrierenstandort nähergehend bekannt sind [108].

3.2 Aufbau eines Streckenverschlussbauwerks

Da der Aufbau des Streckenverschlusses abhängig von den Standortbedingungen ist, wurde bisher noch kein detailliertes technisches Konzept für einen Streckenverschluss in einem HAW Endlager festgelegt [108]. Basierend auf den oben genannten Anforderungen lässt sich jedoch der in Abb. 3 dargestellte, vereinfachte Aufbau eines Streckenverschlussbauwerks ableiten.

Abb. 3: Vereinfachtes Prinzip eines Streckenverschlussbauwerks mit den einzelnen Funktionselementen [24].

Streckenverschlussbauwerke bestehen, wie in Abb. 3 dargestellt, aus zwei wesentlichen Funktionselementen. Dies sind zum einen das Widerlager, das im Falle eines Druckanstieges auf einer Seite des Bauwerks die Lagestabilität des Bauwerks gewährleistet und zum anderen die Dichtelemente, die zur Abdichtung der Strecke gegenüber migrierenden Lösungen oder Gasen dienen. Im Sinne der Diversität und Redundanz sollen die Dichtelemente aus zwei verschiedenen Baustoffen hergestellt werden. Hierzu können kombinierte Widerlager/Dichtelemente aus Salzbeton oder Sorelbeton mit
reinen Dichtelementen aus Bitumen oder Bentonit kombiniert werden [14; 15]. Einzelne Baustoffe, wie z.B. Salzbeton oder Sorelbeton, können zur Herstellung kombinierter Funktionselemente eingesetzt werden, d.h. sie dienen gleichzeitig als Widerlager und als Dichtelement. Auf die möglichen Baustoffe wird nachfolgend im Kapitel 3.3.2 eingegangen.

3.3 Integrale Permeabilität/ Strömungsräume

Die hydraulischen Anforderungen an die technischen und geotechnischen Barrieren werden anhand von Stofftransportberechnungen erarbeitet, die im Rahmen der radiologischen Langzeitsicherheitsanalyse durchgeführt werden. Hierbei wird der Strömungswiderstand der jeweiligen Barrieren ermittelt, der zur Einhaltung des radiologischen Schutzzieles nötig ist [108].

Die Untergliederung der hydraulisch relevanten Querschnittsfläche in drei Abschnitte erfolgte auch bei der Nachweisführung der Abdichtbauwerke im Rahmen des Planfeststellungsverfahrens für die Stilllegung des Endlagers Morsleben [8]. Für die Modellierungen wurden die folgenden drei Strömungsräume betrachtet:

- das Dichtelement aus hydraulisch abbindenden Baustoffen
- die Auflockerungszone im Salz
- die Kontaktzone zwischen Salzbetonkörper und Streckenkontur

Aus den Querschnittsflächen, sowie der Permeabilität der jeweiligen Strömungsräume erfolgt mit der untenstehenden Formel die Berechnung der integralen, d.h. querschnittsgemittelten Permeabilität des Streckenverschlussbauwerks [100]:

\[k_{\text{integral}} = \frac{k_D \cdot A_D + k_K \cdot A_K + k_{\text{ALZ}} \cdot A_{\text{ALZ}}}{A_D + A_K + A_{\text{ALZ}}} \]

\(K_{\text{integral}} = \text{Integrale Permeabilität} \)
\(K_D = \text{Permeabilität des Dichtelements} \)
\(K_K = \text{Permeabilität des Kontaktbereichs} \)
\(K_{\text{ALZ}} = \text{Permeabilität der Auflockerungszone} \)
\(A_D = \text{durchströmte Querschnittsfläche des Dichtelements} \)
\(A_K = \text{durchströmte Querschnittsfläche des Kontaktbereichs} \)
\(A_{\text{ALZ}} = \text{durchströmte Querschnittsfläche der Auflockerungszone} \)

Die Dichtigkeit des Bauwerks gegenüber Lösungen und somit auch dessen Funktionalität hängt vom Zusammenwirken der einzelnen Strömungsräume des Streckenverschlussbauwerks ab. Selbst wenn nur einer der Bereiche umläufig ist, verliert das Streckenverschlussbauwerk seine Funktion. Im Folgenden werden die drei Strömungsräume näher beschrieben und es wird auf den Stand von
Wissenschaft und Technik hinsichtlich des Erreichens einer ausreichend geringen Permeabilität in dem jeweiligen Strömungsraum eingegangen.

3.3.1 Salzgebirge

Bei der Endlagerung im Salinar dienen die Evaporitminerale des Salzgebirges als einschlusswirksamer Gebirgsbereich, in dem die Hohlräume des Endlagerbergwerks aufgefahren und die Abfälle eingeschlossen werden. Beim Verschließen der Zugangsstrecken mittels Streckenverschlussbauwerken müssen einige Materialeigenschaften des Salzgebirges beachtet werden, damit das Streckenverschlussbauwerk seine Funktionalität erreicht. Das Salzgebirge setzt sich aus unterschiedlichen Sulfaten und Chloriden zusammen, die meist Kalium, Natrium und Magnesium enthalten. Die am häufigsten auftretenden Evaporitminerale des Salzgebirges sind in Tab. 2 zusammengestellt. Im Salinar können neben den Evaporitmineralen, welche durch unterschiedliche Löslichkeiten gekennzeichnet sind, auch Tone, Karbonate und Siliziklastika vorkommen.

Tab. 2: Vorstellung der im Salinar am häufigsten vorkommenden leichtlöslichen Salzminerale.

<table>
<thead>
<tr>
<th>Mineralname</th>
<th>Chemische Zusammensetzung</th>
<th>Löslichkeit [g/l] bei 20° C</th>
<th>Deliqueszenzfeuchtigkeit</th>
<th>Lösungsstabilität im Kontakt mit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carnallit</td>
<td>KMgCl₃ x 6 H₂O</td>
<td>X</td>
<td>42 % ([57])</td>
<td>NaCl-gesättigter Lösung</td>
</tr>
<tr>
<td>Kieserit</td>
<td>MgSO₄ x H₂O</td>
<td>755 ([57])</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Kainit</td>
<td>KMg(CISO₄) x 3 H₂O</td>
<td>X</td>
<td>75,4 % ([58])</td>
<td></td>
</tr>
<tr>
<td>Halit</td>
<td>NaCl</td>
<td>357</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Anhydrit</td>
<td>CaSO₄</td>
<td>347</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Sylvin</td>
<td>KCl</td>
<td>347</td>
<td>85 % ([58])</td>
<td></td>
</tr>
</tbody>
</table>

Die Auflistung gibt lediglich einen Überblick über die am häufigsten vorkommenden Evaporitminerale. Standortabhängig ist bei der Planung der Streckenverschlussbauwerke die Mineralogie am Einbaustandort zu untersuchen, wobei insbesondere auf das Vorhandensein von leichtlöslichen Kalisalzen zu achten ist.

Das Salzgebirge weist einige besondere Materialeigenschaften auf, die bei der Errichtung des Streckenverschlussbauwerks berücksichtigt werden müssen, um eine möglichst geringe integrale Permeabilität realisieren zu können:

- Teilweise gute bis sehr hohe Löslichkeiten der Evaporitminerale in Abhängigkeit der Zusammensetzung zutretender Lösungen
- Plastisches Materialverhalten und Ausbildung von aufgelockerten Gebirgsbereichen um aufgefahrenen Hohlräume
- Teilweise niedrige Deliqueszenzfeuchtigkeit der Salzminerale

Löslichkeit

Das erste Szenario stellt einen Zutrittspfad dar, entlang dessen nur Steinsalz und keine weiteren Evaporitminerale (wie z.B. Kalisalze) aufgeschlossen sind. In diesem Fall ist nur ein Zutritt von NaCl-gesättigten, und MgCl₂-untersättigten Lösungen an das Streckenverschlussbauwerk zu berücksichtigen. In dieser Lösung ist nur Halit (Steinsalz) lösungsstabil.

<table>
<thead>
<tr>
<th>Konzentration g/l</th>
<th>IP21-Lösung</th>
<th>Gesättigte NaCl-Lösung</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgSO₄</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>313</td>
<td>0</td>
</tr>
<tr>
<td>KCl</td>
<td>40</td>
<td>359</td>
</tr>
<tr>
<td>NaCl</td>
<td>21</td>
<td>841</td>
</tr>
<tr>
<td>H₂O</td>
<td>885</td>
<td>841</td>
</tr>
<tr>
<td>Stabile Bodenkörper</td>
<td>Carnallit – Kainit – Sylvin – Halit</td>
<td>Halit</td>
</tr>
</tbody>
</table>

Tab. 3: Gehalte der gelösten Stoffe in IP21 Lösung und gesättigter NaCl-Lösung [56]

Das zweite und wesentlich komplexere Szenario ist ein Grubengebäude in dem neben Steinsalz mehrere, unterschiedliche Kalisalze aufgeschlossen sind. Diese beeinflussen sich gegenseitig in ihrem Lösungsverhalten, wobei die Lösungen neben Natrium- und Chloridionen auch Kalium-, Magnesium- und Sulfationen enthalten. Für den zweiten Fall muss eine standortbezogene Betrachtung durchgeführt werden, um eine Aussage über die Zusammensetzung von Lösungen treffen zu können. Beispielsweise ist in Tab. 3 die im Kontakt mit den im Endlager Morsleben vorkommenden Kalisalzen zu erwartende Lösungszusammensetzung (IP21-Lösung) angegeben. In dieser Lösung sind Carnallitit (KMgCl₂ · 6H₂O), Kainit (KMg[Cl]SO₄ · 3H₂O), Sylvin (KCl) und Halit (NaCl) lösungsstabil. Wichtig ist, dass zutretende Lösungen im Lösungsgleichgewicht mit den am Barrierenstandort vorherrschenden Salzmineralen sind, da andernfalls die Dichtheit der Barriere beeinträchtigt werden kann.

Um sicherzugehen, dass die zutretenden Lösungen in Bezug auf die am Barrierenstandort vorkommenden Minerale gesättigt sind, können Vorschüttungen bestehend aus Salzgrus mit einer definierten mineralogischen Zusammensetzung zum Einsatz kommen [108]. Die Vorschüttungen werden entlang der Zugangsstrecken zum Streckenverschlussbauwerk eingebracht. Bei einem Lösungszutritt werden die Vorschüttungen teilweise gelöst, wodurch sich die chemische Zusammensetzung der zutretenden Lösung verändert und diese nicht mehr untersättigt ist in Bezug auf die am Barrierenstandort vorkommenden Minerale.

Zusätzlich zu den oben genannten Lösungen können auch Lösungen, die im Zusammenhang mit der Einbringung des Baustoffes des Streckenverschlussbauwerks stehen, zum Lösen und somit zur Schädigung des konturnahen Gebirges führen. Die zwei Möglichkeiten die hier bestehen sind zum einen, dass der Baustoff beim Abbinden Überstandslösung abgibt, die in Bezug auf die umliegenden
Salzminerale untersättigt ist. Zum anderen kann die Baustoffsuspension, solange diese noch nicht abgebunden ist, das umliegende Salzgebirge lösen. Daher müssen die zur Errichtung des Streckenverschlussbauwerks eingesetzten Baustoffe sorgfältig auf die am Barrierenstandort vorkommenden Salzminerale abgestimmt werden. Im Kapitel 3.3.2 werden mögliche Baustoffe vorgestellt, und es werden mögliche Wechselwirkungen zwischen den Salzmineralen am Barrierenstandort und den Baustoffen des Streckenverschlussbauwerks beschrieben.

Auflockerungszone

Die Ausbildung der Auflockerungszone wird stark durch die Auffahrungsmethode beeinflusst. Aus diesem Grund werden Strecken, in denen Verschlussbauwerke erstellt werden sollen, so gebirgsschonend wie möglich aufgefahren. Hierbei wird die konventionelle Streckenauffahrung mittels Bohren und Sprengen als die ungeeignetste Methode betrachtet. Durch die Sprengung kommt es zu einer starken Beanspruchung des Gebirges auch über die Streckenkontur hinaus, was zur Bildung einer ausgedehnten Auflockerungszone führt. In Untersuchungen zur Durchlässigkeit des konturnahen Bereiches von bergmännisch aufgefahrenen Gasspeichern wurde festgestellt, dass sich bei Sprengarbeiten die Durchlässigkeit um das 10^5- bis 10^6-fache erhöht[22].

Um eine möglichst geringfügig ausgebildete Auflockerungszone zu erhalten wird daher die Strecke, in der das Streckenverschlussbauwerk errichtet werden soll, mit einer Teilschnittmaschine aufgefahren. Kurz vor dem Beginn der Errichtung des Streckenverschlussbauwerks wird die Auflockerungszone erneut mit einer Teilschnittmaschine um 20 bis 50 cm nachgeschnitten[8]. Durch das Entfernen der Auflockerungszone werden im konturnahen Bereich ähnliche Permeabilitäten wie im intakten Salzgebirge gemessen (Vgl. Abb. 4).

Deliqueszenzfeuchtigkeit

Eine weitere Eigenschaft der Salzminerale, die Beachtung finden muss, ist die Deliqueszenzfeuchtigkeit. Die Deliqueszenzfeuchtigkeit gibt die für jedes Salz spezifische Luftfeuchtigkeit an, ab der Feuchtigkeit durch das Salz aus der Luft aufgenommen wird. Im Kontakt mit der in den Grubenwettern enthaltenen Feuchtigkeit kann es zur Destabilisierung und Auflösung einiger Salze kommen. Soweit Werte zur Deliqueszenzfeuchtigkeit in der Literatur gefunden werden konnten, sind diese in Tab. 2 angegeben.

Im Falle des Auftretens von Mineralien mit einer besonders geringen Deliqueszenzfeuchtigkeit muss bei der Errichtung des Streckenverschlussbauwerks auf einen möglichst kurzen Zeitraum zwischen Nachschnitt und Betonage des Streckenverschlussbauwerks geachtet werden. Andernfalls kann es zum teilweisen Herauslösen einzelner Minerale in der Streckenkontur durch die Feuchtigkeit der
Grubenwetter kommen, was zur Ausbildung von Wegsamkeiten im Salzgebirge um das Streckenverschlussbauwerk führen kann.

Um den Einfluss der Deliqueszenzfeuchtigkeit auf die Permeabilität des konturnahen Gebirges zu minimieren, sollten bei der Planung des Streckenverschlussbauwerks Standorte im Steinsalz bevorzugt werden. Falls keine Barrierenstandorte im Steinsalz zur Verfügung stehen, besteht die Möglichkeit, durch Beschichtungen der Streckenkontur die Aufnahme von Feuchtigkeit aus den Grubenwettern zu verhindern [41].

Wichtig für die Funktionalität der Strömungsbarriere ist die Auswahl eines geeigneten Barrierenstandortes sowie dessen gezielte Vorbereitung für die Errichtung der Strömungsbarriere. Durch die Beachtung der Besonderheiten im Lösungsverhalten der Salzminerale sowie dem Entfernen der Auflockerungszone ist es möglich im Bereich des konturnahen Gebirges sehr niedrige Permeabilitäten zu realisieren.

3.3.2 Baustoff des Streckenverschlussbauwerks

Mögliche Baustoffe

Es gibt eine Reihe von Baustoffen, die für die Errichtung von Streckenverschlüssen im Salinar prinzipiell zur Verfügung stehen. Sie können in arteigene Materialien (die natürlicherweise in Salzlagerstätten vorkommen) sowie nicht arteigene Materialien unterteilt werden (Tab. 4)[14].

![Tab. 4: Zusammenstellung von Baustoffen, die für die Errichtung von Streckenverschlussbauwerken im Salinar prinzipiell zur Verfügung stehen (Nach[14]).](image)

Sowohl für Salzbetone als auch für Magnesiabinder gibt es eine Vielzahl an unterschiedlichen Rezepturen, die hinsichtlich ihrer Eignung für die Errichtung von Streckenverschlussbauwerken von Endlagerbergwerken im Salinar erforscht und im untertägigen Einsatz getestet wurden. Besonders ausgiebig wurde hierbei der Salzbeton M2 im Rahmen des Planfeststellungsverfahrens für die Stilllegung des Endlagers Morsleben untersucht. Im Salzbeton M2 kam eine spezielle Steinkohlenflugasche zum Einsatz, die heute nicht mehr verfügbar ist. Deswegen ist der Salzbeton M2 durch den sogenannten bgZ-Salzbeton ersetzt worden. Die Zusammensetzungen der beiden Salzbetone sind in Tab. 5 dargestellt.

Tab. 5: Rezeptur für jeweils 1 m³ des bgZ-Salzbetons sowie des Salzbetons M2

<table>
<thead>
<tr>
<th>Salzbeton M2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesteinskörnung</td>
<td>Zement</td>
</tr>
<tr>
<td>Steinsalz</td>
<td>CEM III/B 32,5 NW/HS/NA</td>
</tr>
<tr>
<td>1072 kg/m³</td>
<td>328 kg/m³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bGZ-Salzbeton</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesteinskörnung</td>
<td>Zement</td>
</tr>
<tr>
<td>Steinsalzzuschlag</td>
<td>Natursand 0/2</td>
</tr>
<tr>
<td>Zieltierz</td>
<td>Rogätz</td>
</tr>
<tr>
<td>Dichte</td>
<td>Masse, tr.</td>
</tr>
<tr>
<td>kg/dm³</td>
<td></td>
</tr>
<tr>
<td>2,16</td>
<td>770</td>
</tr>
</tbody>
</table>

Tab. 6: Rezeptur des Magnesiabinders MB10[60]

<table>
<thead>
<tr>
<th>Silikatischer Zuschlag</th>
<th>Bindemittel</th>
<th>Anmachlösung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Körnung 0-8 mm</td>
<td>Kaustisches MgO</td>
<td>R-Lösung</td>
</tr>
<tr>
<td>63, 4 Gew. %</td>
<td>18,3 Gew. %</td>
<td>18, 3 Gew. %</td>
</tr>
</tbody>
</table>

Für den bgZ-Salzbeton liegen keine so weitreichenden Untersuchungsergebnisse wie für den Salzbeton M2 vor, weswegen dessen Eigenschaften hier vorgestellt werden. Für die Laboruntersuchungen im Rahmen dieser Arbeit wird jedoch der bgZ-Salzbeton verwendet, da einzelne Bestandteile des...
Salzbetons M2 nicht mehr verfügbar sind. Von den verfügbaren Magnesiabindern wird der Magnesiabinder MB10 (Tab. 6) betrachtet, der im Vorhaben CARLA eingesetzt wurde und sich auch im Labormaßstab gut handhaben lässt. In Tab. 7 sind einige der wichtigsten Materialkennwerte des Salzbetons M2 sowie des Magnesiabinder MB10 dargestellt.

Tab. 7: Unterschiedliche Materialeigenschaften des Salzbetons M2 sowie des Magnesiabinders MB10.

<table>
<thead>
<tr>
<th>Materialeigenschaft</th>
<th>Salzbeton M2[28]</th>
<th>Materialeigenschaft</th>
<th>Magnesiabinder MB10[60]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rohdichte</td>
<td>1,995</td>
<td>Rohdichte</td>
<td>2,24 t/m³</td>
</tr>
<tr>
<td>Ausbreitmaß bei Raumklima. 0 und 60 Minuten nach dem Anmischen</td>
<td>70 cm und 65 cm</td>
<td>Ausbreitmaß</td>
<td>55 cm bis 68 cm</td>
</tr>
<tr>
<td>Erstarrungsbeginn</td>
<td>-</td>
<td>Erstarrungsbeginn</td>
<td>ca. 4 h</td>
</tr>
<tr>
<td>Erstarrungsende</td>
<td>-</td>
<td>Erstarrungsende</td>
<td>ca. 6 h</td>
</tr>
<tr>
<td>Einaxiale Druckfestigkeit</td>
<td>23,4 MPa (Nach 28 Tagen Lagerung bei 20° C)</td>
<td>Einaxiale Würfeldruckfestigkeit</td>
<td>> 70 MPa</td>
</tr>
<tr>
<td>Statischer E-Modul Abbindezeit 28 und 270 Tage</td>
<td>11700 MPa (28 Tage) 19700 MPa (270 Tage)</td>
<td>Statischer E-Modul</td>
<td>> 30 GPa</td>
</tr>
<tr>
<td>Zugfestigkeit</td>
<td>2,04 MPa (56 Tage)</td>
<td>Spaltzugfestigkeit</td>
<td>> 4,5 MPa</td>
</tr>
<tr>
<td>Thermischer Ausdehnungskoeffizient</td>
<td>4,8*10⁻⁵ K⁻¹</td>
<td>Thermischer Ausdehnungskoeffizient</td>
<td>10⁻⁵ K⁻¹</td>
</tr>
<tr>
<td>Permeabilität (Gaspermeabilität, Labor)</td>
<td>3,7*10⁻²⁰ m²</td>
<td>Permeabilität (Gaspermeabilität, Labor)</td>
<td><3*10⁻¹⁸ m²</td>
</tr>
<tr>
<td>Wasserabsetzen (Zylinderdurchmesser 200 mm; Füllvolumen 62,8 Liter)</td>
<td>6 Stunden: 3 mm 15 Stunden: 8 mm 48 Stunden: 6 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endschwindmaß bei 20° C und 65 % rel. Luftfeuchtigkeit</td>
<td>1,1 mm/M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porosität</td>
<td>18,2 %</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kompatibilität mit zutretenden Lösungen

Nach der Errichtung des Streckenverschlussbauwerks ist es möglich, dass entweder aus dem Grubengebäude oder vom Schacht Lösungen an den Baustoff herantreten. Diese Lösungen sättigen sich entlang des Fließweges in Bezug auf die anstehenden Salze auf. Prinzipiell sind in Bezug auf Korrosionsprozesse in den hydraulisch abbindenden Baustoffen zwei Lösungen zu unterscheiden. Diese können entweder rein NaCl gesättigt und MgCl₂ untersättigt sein oder neben NaCl auch einen
signifikanten Anteil an MgCl₂ enthalten. Für die Auswahl des geeigneten Baustoffes ist insbesondere der MgCl₂-Gehalt der Lösung von Bedeutung, wobei unterschieden wird zwischen:

- NaCl gesättigten Lösungen mit einem Gehalt von unter 50 g/L MgCl₂
- NaCl gesättigten Lösungen mit einem Gehalt von über 50 g/L MgCl₂

Beim Kontakt von Salzbetonen mit sulfat- und magnesiumhaltigen Lösungen kann es zum Sulfattreiben oder dem lösenden Angriff durch Magnesium kommen.

Beim Sulfattreiben können die in der zutretenden Lösung enthaltenen Sulfate mit dem Zementstein im Salzbeton unter der Bildung von Ettringit reagieren. Bei der Ettringitbildung wird dem Zementstein Calcium entzogen, wodurch es zu einer Entfestigung des Betons kommen kann[59].

Der lösende Angriff durch Magnesium führt dazu, dass das Calcium der Calcium-Silikat-Hydrat Phasen des Zementsteins unter der Bildung von Magnesium-Silikat-Hydraten herausgelöst wird, wobei die Festigkeit des Baustoffes bis zur völligen Entfestigung sinkt[59].

Daher sollte Salzbeton als Baustoff eingesetzt werden, wenn zu erwarten ist, dass die zutretenden Lösungen zwar NaCl gesättigt sind, jedoch einen möglichst geringen Magnesiumchloridgehalt aufweisen. So reichert hingegen ist erst stabil, wenn die zutretenden Lösungen einem MgCl₂-Gehalt von über 50 g/l H₂O aufweisen[34]. Im Kontakt mit geringer mineralisierten Lösungen kommt es zur Auswaschung von Chlorid aus dem Sorelbeton, wodurch dieser destabilisiert wird[109].

Kompatibilität mit dem Gebirge

Einbringung des Baustoffes

Durch eine geeignete Einbringung des Baustoffes sowie die Vorbereitung des Barrierenstandortes ist sicherzustellen, dass sowohl ein homogener Baustoffkörper, der keine Angriffspunkte für Korrosionsprozesse bietet, als auch eine vollständige Anbindung des Baustoffes an das Gebirge realisiert wird.

Bei der Einbringung des Baustoffes ist die Entstehung von Betonierfenen zu vermeiden. Als Betonierfuge werden Schichtgrenzen im Baustoff bezeichnet, die durch Aushärtung des Baustoffes
während Unterbrechungen des Einbringungsverfahrens entstehen. Problematisch an diesen
Schichtgrenzen ist, dass sie im Vergleich zum homogenen Beton (keine Schichtgrenzen) erhöhte
Permeabilitäten aufweisen und es entlang der Betonierfuge zur Korrosion des Baustoffes kommen
kan. Daher soll das Betonieren „nass in nass“ bzw. „frisch in frisch“ erfolgen, um die Bildung einer
axialen Betonierfuge im Bauwerk zu vermeiden[26].

Um eine möglichst vollständige Anbindung des Baustoffes an das Gebirge zu erreichen, wird die Firste
in Richtung der Stirnseite des Bauwerks, von der der Baustoff eingebacht wird, ansteigend
nachgeschnitten. In den Planfeststellungsverfahrensunterlagen für das Endlager für radioaktive Abfälle
Morsleben ist ein Anstieg der Firste von 2° vorgesehen[23]. Durch die möglichst vollständige
Anbindung des Baustoffes des Streckenverschlussbauwerks an das anstehende Gebirge soll die
Ausbildung von Schwachstellen bzw. Wegsamkeiten im Kontaktbereich zwischen Baustoff und Gebirge
für zutretende Lösungen vermieden werden.

3.3.3 Kontaktbereich Baustoff/Gebirge

Zur Berechnung der integralen Permeabilität wird neben dem anstehenden Gebirge mit der
Auflockerungszone und dem Baustoff des Streckenverschlussbauwerks auch der Kontaktbereich
zwischen Baustoff und Gebirge herangezogen. Um die Funktionstüchtigkeit des
Streckenverschlussbauwerks zu gewährleisten, müssen alle drei betrachteten Strömungsräume dicht
gegenüber Fluiden sein [108].

Durch das Nachschneiden der konturnahen Auflockerungszone mit den Bereichen erhöhter
Permeabilität vor der Errichtung des Streckenverschlussbauwerks sowie einem qualitätsgesicherten
Einbringen des Baustoffes wird angenommen, dass sehr niedrige Permeabilitätswerte in diesen beiden
Bereichen erreicht werden können.

Abb. 4 stellt den vertikalen Schnitt durch ein in der Schachtanlage Asse 2 errichtetes
Streckenverschlussbauwerk dar. An diesem Streckenverschlussbauwerk wurden nach der Errichtung
zahlreiche Messungen durchgeführt, unter anderem Permeabilitätsmessungen. Die
Permeabilitätsmessungen erfolgten sowohl integral, also gemittelt über größere Abschnitte, als auch
innerhalb sehr kleiner Abschnitte, die belastbare Messwerte für die Permeabilität des Baustoffes des
Streckverschlussbauwerks, der Kontaktzone zum Gebirge als auch dem konturnahen Salzgebirge
liefern. Diese gewonnen Messwerte zeigen, dass im Baustoff des Streckenverschlussbauwerks die
geringsten Permeabilitäten gemessen wurden (3,0*10^{-18} m² bis 1,9*10^{-19} m²), gefolgt von dem
konturnahem Salzgebirge (2,9*10^{-18} m² bis 1,1*10^{-18} m²).
Abb. 4: Permeabilitätsmessungen eines Streckenverschlussbauwerks. Die Permeabilitätsmesswerte im rechten Bereich der Abbildung wurden im Steinsalz, dem Kontaktbereich Bauwerk/Gebirge sowie im Baustoff ermittelt und zeigen dass die Kontaktfuge den Bereich mit der höchsten Permeabilität aufweist [101].

Der durchlässigste Bereich des Streckenverschlussbauwerks war der Kontaktbereich zwischen dem Baustoff des Streckenverschlussbauwerks und dem Salzgebirge ($1,3 \times 10^{-16} \text{ m}^2$ bis $1,5 \times 10^{-17} \text{ m}^2$). Diese Messwerte zeigen, dass auch bei niedrigen integralen Permeabilitäten, die im Streckenverschlussbauwerk erreicht werden ($3,9 \times 10^{-18} \text{ m}^2$ bis $1,2 \times 10^{-18} \text{ m}^2$), einzelne, durchlässigere Bereiche im Kontaktbereich Baustoff/Gebirge verbleiben.

3.4 Bildung Kontaktfuge / Schädigung des Kontaktbereichs

Auf die Querschnittsfläche des Bauwerkes betrachtet stellt die Kontaktfuge nur eine kleine Fläche dar. Jedoch können sich hier durch Schwindprozesse während des Abbindeprozesses der verwendeten hydraulisch abbindenden Baustoffe besonders im Firstbereich Wegsamkeiten bilden, wodurch die Permeabilität in diesem Bereich erhöht und Korrosionsprozesse begünstigt werden.

Als autogenes Schwinden wird der Volumenverlust des Baustoffs beim Abbindevorgang bezeichnet. Das autogene Schwinden tritt bei allen hydraulisch abbindenden Baustoffen auf, wobei es bei Salzbeton stärker ausgeprägt ist als bei normalem Beton. Untersuchungen im Rahmen des Planfeststellungsverfahrens zur Stilllegung des Endlagers Morsleben ergaben, dass das autogene
Schwinden bis zu 1 mm pro Meter Salzbeton betragen kann, wobei der Mittelwert der Versuche nach einer Abbindezeit von 2000 Stunden (83 Tage) bei 0,5 mm/Meter lag[23]. Für den sehr detailliert untersuchten Salzbeton M2 liegen die in Abb. 5 gegebenen Informationen zum Schwinden des Betons über die Abbindezeit vor.

Bei beiden Schwindvorgängen spielt die Anbindung des Baustoffes an das Gebirge eine wichtige Rolle. Wenn sich während der Abbindephase eine gute und stabile Verbindung zwischen Baustoff und Gebirge ausbilden kann, z.B. durch Anlösen des Salzes durch die Feuchtigkeit im Baustoff und anschließende Bildung von kristallinen Verwachsungen zwischen Baustoff und Gebirge, kann die Gefahr von Umläufigkeiten durch Schwindvorgänge reduziert werden.

Abb. 5: Schwindmaße des Salzbetons M2 in Abhängigkeit der Abbindezeit der Prüfkörper. Die Proben Klima 20/40 wurden bei 20°C und 40 % relativer Luftfeuchtigkeit gelagert und die Proben Klima 20/65 bei 20 °C und 65 % relativer Luftfeuchtigkeit[28].

In Abb. 5 ist das Schwindmaß des Salzbetons der Rezeptur M2 über die Abbindezeit dargestellt. Hierbei lässt sich erkennen, dass das Schwinden im Wesentlichen in den ersten 50 bis 100 Tagen nach der Herstellung des Betons stattfindet. Dies ist von Bedeutung, da hydraulisch abbindende Baustoffe infolge des Abbindeprozesses ihre maximale Festigkeit nicht sofort aufweisen, sondern erst nach einigen Wochen erreichen. Entscheidend für die Entstehung von Trennflächen im Baustoff oder im Kontaktbereich Baustoff/Gebirge ist der Aufbau von Zugspannungen durch die oben genannten

Tab. 8: Ermittelte Zugfestigkeit von Salzbeton M2 sowie die Haftzugfestigkeit zwischen Steinsalz und dem Salzbeton M2 in Abhängigkeit des Abbindealters[26].

<table>
<thead>
<tr>
<th>Wirksames Betonalter t_e [d]</th>
<th>14</th>
<th>28</th>
<th>56</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zugfestigkeit f_{ct} Salzbeton M2 [MPa]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mittelwert m</td>
<td>1.0888</td>
<td>2.4279</td>
<td>3.2500</td>
</tr>
<tr>
<td>Standardabweichung σ</td>
<td>0.2174</td>
<td>0.4937</td>
<td>0.4333</td>
</tr>
<tr>
<td>5%-Fraktil $f_{ct, 5%}$</td>
<td>0.7312</td>
<td>1.6156</td>
<td>2.5373</td>
</tr>
<tr>
<td>95%-Fraktil $f_{ct, 95%}$</td>
<td>1.4463</td>
<td>3.2401</td>
<td>3.9627</td>
</tr>
</tbody>
</table>

| Haftzugfestigkeit f_{tc} Kontaktzone Salzbeton M2 – Salz [MPa] |
|--------------------|------|------|------|
| Mittelwert m_e | 0.2447 | 0.5821 | 0.7007 |
| Standardabweichung σ_e | 0.0350 | 0.1301 | 0.1754 |
| 5%-Fraktil $f_{tc, 5\%}$ | 0.1871 | 0.3681 | 0.4122 |
| 95%-Fraktil $f_{tc, 95\%}$ | 0.3023 | 0.7962 | 0.9891 |

* wirksames Betonalter = 51 d

4. Injektionen

Die Anzahl der möglichen verfügbaren Injektionsmittel wird zudem weiter eingeschränkt durch die Restriktionen, die sich infolge des Einsatzes in einem HAW-Endlager ergeben:

- Sehr hohe Anforderungen hinsichtlich der zu erreichenden Permeabilität durch die Injektionsmaßnahme
 - Injektionsmittel müssen in Wegsamkeiten mit geringen Öffnungsweiten eindringen können
- Nachweis der Beständigkeit der Baustoffe über lange Zeiträume:
 - Die eingesetzten Baustoffe müssen unter den im Endlager herrschenden Bedingungen langfristig beständig sein [99], [24].

Um den Stand von Wissenschaft und Technik darzulegen, wird im Folgenden vorgestellt, welche Erkenntnisse hinsichtlich Injektionsmaßnahmen im Salinar vorliegen. Bei der Zusammenstellung der verfügbaren Literatur wird zwischen Erfahrungsberichten bereits durchgeführter Injektionsmaßnahmen, In-Situ Versuchen und Versuchen im Labormaßstab unterschieden. Aufgrund
des besonderen Einsatzbereiches der Kontaktfugeninjektion werden zudem Anforderungen an Injektionsmaterialien für diese Aufgabestellung zusammengestellt, die eine Auswahl geeigneter Injektionsmaterialien ermöglichen sollen. Abschließend werden unterschiedliche zur Abdichtung der Kontaktfuge geeignete Injektionsmaterialien vorgestellt.

4.1 Injektionen im Salz

Es gibt eine große Anzahl an Literatur, die sich mit der Injektion von Böden oder mit der Injektion von geklüftetem Fels im Tiefbau, im Tunnelbau oder im Bergbau beschäftigt. Im Vergleich hierzu ist der Informationsstand hinsichtlich Injektionsmaßnahmen, die im Salinar durchgeführt wurden sowie der hierbei eingesetzten Injektionsmaterialien gering.

In Tab. 9 wurden schriftliche Erfahrungsberichte zu Injektionsmaßnahmen im Salz zusammengestellt. Die Zusammenstellung beinhaltet eine kurze Zusammenfassung der durchgeführten Arbeiten zu den einzelnen Erfahrungsberichten, die wesentlichen Erkenntnisse sowie eine Auflistung der eingesetzten Injektionsmaterialien. Die durchgeführten Arbeiten umfassen einen Zeitraum von annähernd 100 Jahren und wurden mit unterschiedlichen partikelgestützten sowie partikelfreien Injektionsmaterialien durchgeführt.

Im Wesentlichen dienten die in den Erfahrungsberichten durchgeführten Maßnahmen dazu, Streckenverschluszbauwerke gegenüber zutretenden Lösungen abzudichten. Als weitere Aufgabenstellungen sind die Konturverfestigung in Wetterlaugenbereichen, die Abdichtung Lösungsführender Gesteinsformationen sowie die Abdichtung beim Streckenvortrieb angefahrener Altbohrungen zu nennen. Insgesamt wurden im Rahmen der zusammengestellten Erfahrungsberichte sieben Streckenverschluszbauwerke injiziert. Bei den sieben genannten Streckenverschluszbauwerken, die injiziert wurden, ist in vier Fällen keine Information über den Erfolg der Maßnahme dokumentiert, in zwei Fällen waren die Bauwerke undicht und lediglich in einem Fall war das injizierte Streckenverschluszbauwerk dicht gegenüber der anstehenden Lösung.

Als Injektionsmaterialien wurden MgO-Mörtel, Zementsuspensionen sowie verschiedene Kunstharze eingesetzt. Teilweise wurden im Rahmen einer Injektionsmaßnahme unterschiedliche Injektionsmittel eingesetzt, wobei hier zuerst die partikelgestützten und nachfolgend zum Verschließen von Wegsamkeiten mit geringeren Öffnungsweiten partikelfreie Injektionsmaterialien injiziert wurden, jedoch brachte auch diese Herangehensweise nicht den gewünschten Abdichterfolg.

Zusätzlich zu den Erfahrungsberichten von durchgeführten Injektionsarbeiten sind auch einige Forschungsvorhaben/ Versuche zur Untersuchung der Kontaktfuge sowie Injektionen der Auflockerungszone und Kontaktfuge im Salinar durchgeführt worden. Die durchgeführten Versuche dienten der Untersuchung verschiedener Aufgabenstellungen/ Themengebiete, wobei sowohl In-Situ Versuche als auch Laborversuche durchgeführt wurden. Um einen Überblick über die bisher durchgeführten Forschungsarbeiten zur Kontaktfuge sowie Injektionen im Salinar zu geben, wurden die verfügbaren Informationen in Tab. 10 zusammengestellt und hinsichtlich der verschiedenen Themengebiete untergliedert. Hierbei wurde zuerst zwischen In-Situ Versuchen sowie Laborversuchen unterschieden, wobei beide Bereiche weiter untergliedert sind. Die Untergliederung erfolgte hinsichtlich der im Rahmen der Versuche durchgeführten Arbeiten, wobei zudem notiert wurde, welche Baustoffe bzw. Injektionsmaterialien eingesetzt wurden.
Tab. 9: Zusammenstellung von Erfahrungsberichten zu Injektionsmaßnahmen, die im Kontakt mit Salz durchgeführt wurden.

<table>
<thead>
<tr>
<th>Literatur</th>
<th>Bergwerk</th>
<th>Datum</th>
<th>Injektionsmittel</th>
<th>Zusammenfassung der durchgeführten Tätigkeiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krauke, Fliß [34]</td>
<td>Asse</td>
<td>2003</td>
<td>MgO (IM 3)</td>
<td>Nachinjektion der Kernzone einer Fluidbarriere</td>
</tr>
</tbody>
</table>

Tab. 10: Zusammenstellung von In-Situ und Laborversuchen zur Untersuchung der Kontaktfuge sowie zu Anforderungen an Injektionsmittel und Baustoffe für den Einsatz im Salinar.
<table>
<thead>
<tr>
<th>Laborversuche</th>
<th>In-Situ Versuche</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontakteinrichtungen und Vermittlung</td>
<td>Injektionsversuche mit den 5 ausgewählten Injektionsmitteln</td>
</tr>
<tr>
<td>Abkürzungen:</td>
<td>Quelle</td>
</tr>
<tr>
<td>SB = Salzbeton</td>
<td>Kaledin [41]</td>
</tr>
<tr>
<td>SOB = Solebeton</td>
<td>Makke, Laske/ERAM P 255 [43]</td>
</tr>
<tr>
<td>MgO = Feinstmagnesiabinder</td>
<td>Kudla, Dahlhaus [15]</td>
</tr>
<tr>
<td>Z = Feinstzement</td>
<td>Krauke, Fliß/ERAM P 266 [34]</td>
</tr>
<tr>
<td>B = 2K-Bitumen</td>
<td>Fischle [40]</td>
</tr>
<tr>
<td>KH = Kunstharz</td>
<td>Heydorn et al. [101]</td>
</tr>
<tr>
<td>BF = Betonierfuge</td>
<td>Hochschule Ostwestfalen Lippe</td>
</tr>
<tr>
<td>ZG = Zementinjektionsmittel</td>
<td>Bollingerfehr, von Borstel et. al. [53]</td>
</tr>
<tr>
<td>KFP = Kontaktfuge Plexiglas</td>
<td>Groner, Knuck, Kroll [54]</td>
</tr>
<tr>
<td>WG = Wasserglas</td>
<td>Haydon et al. [51]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kontakteinrichtungen</th>
<th>Abkürzungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-Situ Versuche</td>
<td>Kaledin [41]</td>
</tr>
<tr>
<td>Kontakteinrichtungen und Vermittlung</td>
<td>Makke, Laske/ERAM P 255 [43]</td>
</tr>
<tr>
<td>Abkürzungen:</td>
<td>Kudla, Dahlhaus [15]</td>
</tr>
<tr>
<td>SB = Salzbeton</td>
<td>Krauke, Fliß/ERAM P 266 [34]</td>
</tr>
<tr>
<td>SOB = Solebeton</td>
<td>Fischle [40]</td>
</tr>
<tr>
<td>MgO = Feinstmagnesiabinder</td>
<td>Heydorn et al. [101]</td>
</tr>
<tr>
<td>Z = Feinstzement</td>
<td>Hochschule Ostwestfalen Lippe</td>
</tr>
<tr>
<td>B = 2K-Bitumen</td>
<td>Bollingerfehr, von Borstel et. al. [53]</td>
</tr>
<tr>
<td>KH = Kunstharz</td>
<td>Groner, Knuck, Kroll [54]</td>
</tr>
<tr>
<td>BF = Betonierfuge</td>
<td>Haydon et al. [51]</td>
</tr>
<tr>
<td>ZG = Zementinjektionsmittel</td>
<td>KFP = Kontaktfuge Plexiglas</td>
</tr>
<tr>
<td>KFP = Kontaktfuge Plexiglas</td>
<td>WG = Wasserglas</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kontakteinrichtungen</th>
<th>Abkürzungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontakteinrichtungen und Vermittlung</td>
<td>Kaledin [41]</td>
</tr>
<tr>
<td>Abkürzungen:</td>
<td>Makke, Laske/ERAM P 255 [43]</td>
</tr>
<tr>
<td>SB = Salzbeton</td>
<td>Kudla, Dahlhaus [15]</td>
</tr>
<tr>
<td>SOB = Solebeton</td>
<td>Krauke, Fliß/ERAM P 266 [34]</td>
</tr>
<tr>
<td>MgO = Feinstmagnesiabinder</td>
<td>Fischle [40]</td>
</tr>
<tr>
<td>Z = Feinstzement</td>
<td>Heydorn et al. [101]</td>
</tr>
<tr>
<td>B = 2K-Bitumen</td>
<td>Hochschule Ostwestfalen Lippe</td>
</tr>
<tr>
<td>KH = Kunstharz</td>
<td>Bollingerfehr, von Borstel et. al. [53]</td>
</tr>
<tr>
<td>BF = Betonierfuge</td>
<td>Groner, Knuck, Kroll [54]</td>
</tr>
<tr>
<td>ZG = Zementinjektionsmittel</td>
<td>Haydon et al. [51]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kontakteinrichtungen</th>
<th>Abkürzungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontakteinrichtungen und Vermittlung</td>
<td>Kaledin [41]</td>
</tr>
<tr>
<td>Abkürzungen:</td>
<td>Makke, Laske/ERAM P 255 [43]</td>
</tr>
<tr>
<td>SB = Salzbeton</td>
<td>Kudla, Dahlhaus [15]</td>
</tr>
<tr>
<td>SOB = Solebeton</td>
<td>Krauke, Fliß/ERAM P 266 [34]</td>
</tr>
<tr>
<td>MgO = Feinstmagnesiabinder</td>
<td>Fischle [40]</td>
</tr>
<tr>
<td>Z = Feinstzement</td>
<td>Heydorn et al. [101]</td>
</tr>
<tr>
<td>B = 2K-Bitumen</td>
<td>Hochschule Ostwestfalen Lippe</td>
</tr>
<tr>
<td>KH = Kunstharz</td>
<td>Bollingerfehr, von Borstel et. al. [53]</td>
</tr>
<tr>
<td>BF = Betonierfuge</td>
<td>Groner, Knuck, Kroll [54]</td>
</tr>
<tr>
<td>ZG = Zementinjektionsmittel</td>
<td>Haydon et al. [51]</td>
</tr>
</tbody>
</table>
Die im Rahmen der in Tab. 10 zusammenstellten und bisher im Rahmen von Forschungstätigkeiten durchgeführten Versuche im Labormaßstab lassen sich bezüglich ihrer Forschungsschwerpunkte in drei Gruppen unterteilen. Dies sind zum einen Untersuchungen, die an Kontaktfugen durchgeführt wurden, rheologische Untersuchungen an Injektionsbaustoffen sowie Injektionsversuche im Labormaßstab. Von den drei aufgeführten Gruppen wurden im Rahmen bisheriger Forschungstätigkeiten die meisten Untersuchungen hinsichtlich des Kontaktbereichs zwischen hydraulisch abbindenden Baustoffen und dem Salzgebirge durchgeführt. Im Detail umfassen die durchgeführten Untersuchungen Permeabilitätsmessungen, Auswertungen von Dünnenschliffen sowie Spaltzugversuche.

Um das Fließverhalten einzelner Injektionsmittel zu untersuchen wurden rheologische Untersuchungen durchgeführt. Hierbei wurden für zwei Materialien (Bitumen und Natronwasserglas) zeitaabhängige Viskositätsverläufe ermittelt, jedoch erfolgten die Messungen nicht bei bergbaunitypischen Temperaturen. Für Bitumen wurde zudem im Rahmen eines Spalteindringversuchs die minimale Spaltöffnungswerte in die dieses Injektionsmittel noch eindringen kann ermittelt. Des Weiteren wurden für einen Feinstzement sowie Natronwasserglas weitere rheologische Kenndaten wie z.B. die Marshrichterauslaufzeiten ermittelt. Insgesamt sind die verfügbaren Informationen hinsichtlich rheologischer Untersuchungen an Injektionsmaterialien für den Einsatz im Salinar im Umfang limitiert. Dies gilt insbesondere für die folgenden Aspekte:

- Erfassung rheologischer Kenndaten unter bergbaunitypischen Temperaturbedingungen.
- Ermittlung rheologischer Kenndaten bisher nur für einzelne Materialien.
- Keine rheologischen Untersuchungen zu sorelbasierten Injektionsmaterialien oder Kunstharzen für den Einsatz im Salinar.
- Keine Ermittlung von rheologischen Kennwerten im Kontakt mit Salz.

Im Rahmen bisheriger Forschungsvorhaben wurden nur in sehr geringen Umfang im Labormaßstab Injektionsversuche durchgeführt. Das Eindringverhalten der Injektionsmaterialien in die Kontaktfuge wird zum einen durch die rheologischen Eigenschaften der Injektionsmaterialien beeinflusst und zum anderen auch durch die Materialien (Baustoff und Salz), mit denen diese in Kontakt kommen. Daher ist es wichtig, Injektionsversuche zur Ermittlung des Eindringverhaltens von Injektionsmaterialien im Kontakt mit der Umgebung, in der diese eingesetzt werden sollen, durchzuführen. Im Rahmen der bisherigen Forschungsvorhaben wurden keine Injektionsversuche durchgeführt, bei denen
Injektionsmittel entlang des Kontaktbereichs zwischen Salz und einem hydraulisch abbindenden Baustoff, der zur Errichtung von Streckenverschlussbauwerken eingesetzt wurde, injiziert.

4.2 Anforderungen an Injektionsmaterialien im Salz

Bevor die im Rahmen dieser Arbeit durchgeführten Injektionsversuche durchgeführt werden können, sind geeignete Injektionsmaterialien auszuwählen. Um geeignete Injektionsmaterialien für die Aufgabenstellung der Kontaktfugeninjektion zu ermitteln, ist es sinnvoll, zuerst Anforderungen an die einzusetzenden Injektionsmaterialien aufzustellen. Dies gilt insbesondere vor dem Hintergrund, dass die im Rahmen der Kontaktfugeninjektion einzusetzenden Injektionsmaterialien unter den besonderen Randbedingungen, die sich durch den Einsatz der Injektionsmaterialien im Salinar und in einem HAW Endlager ergeben, spezifische Materialeigenschaften aufweisen müssen.

Um die Anforderungen an Injektionsmaterialien zur Kontaktfugeninjektion aufzustellen, wurden im Rahmen dieser Arbeit in einem ersten Schritt Anforderungen an Baustoffe, die bei ähnlichen Aufgabenstellungen eingesetzt werden, aus der Literatur zusammengestellt und gruppiert (Tab. 11). Aus den einzelnen Gruppen beziehungsweise Untergruppen wurden anschließend Anforderungen, die spezifisch für Injektionsmittel zur Kontaktfugeninjektion sind, zusammengestellt.

Es gibt unterschiedliche Aufgabenstellungen bei denen im Salinar Baustoffe mit hohen Anforderungen an die Materialkennwerte eingesetzt werden:

- Baustoffe zur Errichtung von Streckenverschlussbauwerken
- Injektionsmittel zur Permeabilitätsverringerung oder Verfestigung
 - in der Auflockerungszone
 - im Kontaktbereich zwischen Streckenverschlussbauwerk und Salzgebirge

Bei den oben genannten Aufgabenstellungen stehen die eingesetzten Baustoffe in Kontakt mit dem Salinar und müssen eine abdichtende Wirkung aufweisen, wodurch sich teilweise ähnliche Anforderungen an die zur Erstellung sowie Abdichtung von Streckenverschlussbauwerken einzusetzenden Baustoffe ergeben. Diese Anforderungen wurden in unterschiedlichen Planungsdocumenten und Forschungsvorhaben aufgestellt und werden in Tab. 11 zusammenfassend dargestellt.

<table>
<thead>
<tr>
<th>Literatur</th>
<th>Baustoffe</th>
<th>Injektionsmittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krauke/ERAM P 174 [44]</td>
<td>Verfüllung untertägiger Bohrungen mit Magnesiabinder</td>
<td>Kaledin [41]</td>
</tr>
<tr>
<td>DBE/ERAM G 296 [45]</td>
<td>Verfüllmaterial für Strecken mit hohen Anforderungen - Salzbeton M2</td>
<td>Ahrens, Onofrei [42]</td>
</tr>
<tr>
<td>Mischo [48]</td>
<td>Definition der Anforderungen an einen geeigneten Dammstoff für Dammhauerwerke im Salinar</td>
<td>Eyermann [37]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Injektionsmittel für den Einsatz im Salinar im allgemeinen</td>
</tr>
<tr>
<td>Zusätzliche Informationen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Art der Anforderung)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verfüllung untertägiger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bohrungen mit Magnesiabinder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verfüllmaterial für Strecken</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mit hohen Anforderungen -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salzbeton M2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Definition der Anforderungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>an einen geeigneten Dammstoff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>für Dammhauerwerke im Salinar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kunstharze (Allgemeine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materialanforderungen für</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eine langzeitstabile Abdichtung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gegenüber Salzlösungen)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zementbasierte Injektionsmittel zur Abdichtung der Auflockerungszone im Salz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fließfähigkeit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pumpfähigkeit über längere</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strecken und sehr gute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fließeigenschaften</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Der Fließwinkel beträgt ≤ 2,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>niedrige Viskosität</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muss in Mikrorissen mit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Öffnungsweiten unter 100 µm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eindringen können.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90 % der Partikel müssen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kleiner als 10 µm sein.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vorteilhafte rheologische</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eigenschaften (Viskosität,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streckgrenze, annehmbare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topfzeit, annehmbare Aushärtezeit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verarbeitung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salzbeton lässt Betonage “frisch-in-frisch” zu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eignung zum maschinellen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einbringen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lange Topfzeit (über 1 Stunde)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injizierbarkeit über 3 Stunden ohne Agglomierung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanische Anforderungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einaxiale Druckfestigkeit: 15</td>
<td>Zugfestigkeit Beton > Haftzugfestigkeit der Kontaktzone Beton–Salz</td>
<td>Hohe Druckfestigkeit</td>
</tr>
<tr>
<td>MPa (z.Z. keine Obergrenze)</td>
<td>Druckfestigkeit geringer als die des umliegenden Gebirges</td>
<td>Eine Druckfestigkeit, die der des umgebenden Salzgebirges ähnlich ist</td>
</tr>
<tr>
<td>Einaxiale zentrische Zugfestigkeit: >1 MPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Druckfestigkeit ≤ 18 MPa</td>
<td>Funktionsbeständigkeit der Dichtelemente bei für das Salinar typischen</td>
<td></td>
</tr>
<tr>
<td>Zugfestigkeit ≤ 1,25 MPa</td>
<td>Konvergenzraten</td>
<td></td>
</tr>
<tr>
<td>Verformungsverhalten</td>
<td>Funktionstüchtigkeit der Dichtelemente bei für das Salinar typischen</td>
<td></td>
</tr>
<tr>
<td>E-Modul: 5.000 MPa < 25.000 MPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kriechverhalten: stationäre</td>
<td>Möglichkeit der “Selbstheilung“ von Rissen</td>
<td></td>
</tr>
<tr>
<td>Kriechrate möglichst wie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steinsalz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schwinden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autogenesschwinden unter 0,5</td>
<td>kein oder sehr geringes Schwindmaß</td>
<td></td>
</tr>
<tr>
<td>mm/m Trocknungsschwinden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Zeitraum nach 56 Tagen) ≤ 0,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm/m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volumenstabil: Volumenabnahme von unter 1 % bei 50% relater Luftfeuchtigkeit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hydraulische Anforderungen

<table>
<thead>
<tr>
<th>Permeabilität</th>
<th>kf-Werte zwischen 10^{-8} bis 10^{-12} m/s (das entspricht ca. 110^{-14} bis 110^{-18} m²/s)</th>
<th>Permeabilität geringer 10^{-19} m²</th>
<th>Geringe Permeabilität ($<10^{-16}$ m²)</th>
<th>Niedrige Permeabilität</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Frühdichtigkeit ab Einbauzeitpunkt bei Gas- und Laugenandrang sowie Langzeitdichtigkeit gegen Gase und Laugen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porosität</td>
<td>Porosität zwischen 15 und 25 %</td>
<td>keine Porosität des erhärteten Materials</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chemische Anforderungen

<table>
<thead>
<tr>
<th>Funktionalität im Salinar</th>
<th>Keine Anlöse- oder Umlöseprozesse durch den Salzbeton</th>
<th>Abbindefähigkeit und Funktionstüchtigkeit im salinaren Milieu sowie Alterungsbeständigkeit (mehrere Hundert Jahre)</th>
<th>keine chemische Reaktionen zwischen dem Dichtmaterial und den salinaren Komponenten (insbesonders Salzlösungen)</th>
<th>Hoher Widerstand gegenüber chemischen Reaktionen und Korrosion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beständigkeit gegenüber salinaren Lösungen</td>
<td>Das Feststoffvolumen des Salzbetons ohne Porosität, das durch einen Kubikmeter Mg-gesättigter Lösung bis zur vollständigen Zerstörung der CSH-Phasen umgesetzt werden kann sollte ≤ 3 m³ betragen.</td>
<td>Laugenbeständigkeit (NaCl-gesättigt sowie stark MgCl₂ und CaSO₄-haltig)</td>
<td>Unlöslich: (möglichst geringer Gehalt an Calciumhydroxid, welches die löslichste Komponente von Beton ist.)</td>
<td>Hoher Widerstand gegenüber salinaren Lösungen</td>
</tr>
</tbody>
</table>

Thermische Anforderungen

<table>
<thead>
<tr>
<th>Einsatzbereich</th>
<th>Temperaturbeständigkeit < 80°C</th>
<th>Funktionstüchtigkeit bei Temperaturen (> 40° C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperaturerwärmung beim Abbinden</td>
<td>Obergrenze des linearen Wärmeausdehnungskoeffizienten bei $4.0*10^{-5}$ 1/K (Entspricht dem Wert für Steinsalz)</td>
<td>Niedriger Anteil an Fließmitteln, da diese zu Volumenverringerungen beim Abbinden führen können.</td>
</tr>
<tr>
<td></td>
<td>Geringe Adiabate Temperaturerhöhung</td>
<td>Quelldruck und Quellvermögen</td>
</tr>
</tbody>
</table>
Die in Tab. 11 zusammengestellten Anforderungen wurden in den jeweiligen Dokumenten für zwei unterschiedliche Aufgabenstellungen (Baustoff für Streckenverschlussbauwerke sowie Injektionsmaterialien) erarbeitet. Sie enthalten daher neben allgemeinen Anforderungen an Baustoffe im Salinar auch für die jeweilige Aufgabenstellung spezifische Anforderungen, die für Injektionsmittel jedoch nicht relevant sind. Eine solche Anforderung ist beispielsweise die rheologische Anforderung eines Fließwinkels von unter 2,5 Gon an Baustoffe für Streckenverschlussbauwerke.

Die Anforderungen an Injektionsmittel zur Injektion des Kontaktbereichs zwischen dem Baustoff des Streckenverschlussbauwerks und dem anstehenden Gebirge lassen sich in fünf verschiedene Kategorien einteilen:

- Rheologische Anforderungen
- Mechanische Anforderungen
- Hydraulische Anforderungen
- Chemische Anforderungen
- Thermische Anforderungen

Über die fünf oben genannten Anforderungen hinaus ergeben sich auch aus der Anwendung der Injektionsmittel weitere Anforderungen. So müssen die Injektionsmittel eine Zulassung nach Gesundheitsschutz-Bergverordnung (GesBergV) aufweisen, um für den Einsatz untertage zugelassen zu sein. Des Weiteren müssen die Injektionsmaterialien transport- und lagerfähig sein.

Im Folgenden wird die Bedeutung der einzelnen ausgewählten Anforderungen hinsichtlich der Erreichung des Ziels der Verfüllung und Abdichtung von Wegsamkeiten im Kontaktbereich Streckenverschlussbauwerk/Salzgebirge mit den zu untersuchenden Injektionsmitteln erläutert.

Rheologische Anforderungen

Die untersuchten Baustoffe sollen zur Injektion der Kontaktfuge zwischen Streckenverschlussbauwerk und Salzgebirge eingesetzt werden. Damit es den untersuchten Stoffen möglich ist, in die Wegsamkeiten der Kontaktfuge einzudringen, müssen diese aufgrund der zu erwartenden sehr geringen Spaltöffnungsweiten von unter 100 µm sehr gut fließfähig sein. Um die Fließfähigkeit der untersuchten Materialien beurteilen zu können, sollen die Viskosität, die Kontaktwinkel im Kontakt mit Steinsalz sowie die Oberflächenspannung herangezogen werden.

Neben der Fließfähigkeit ist auch die Verarbeitbarkeit von besonderer Bedeutung, wobei als Maß für die Verarbeitbarkeit die Topfzeit verwendet wird. Die Topfzeit gibt die Zeit nach dem Anmischen des Baustoffes an, in der dieser verarbeitbar ist. Hierbei werden längere Topfzeiten der einzelnen Baustoffe als vorteilhaft angesehen.

Mechanische Anforderungen

Falls es zu Bewegungen im Kontaktbereich zwischen Bauwerk und Gebirge nach der Injektion der Kontaktfuge kommt, z.B. infolge der Konvergenz des auflaufenden Gebirges, ist es vorteilhaft, wenn das injizierte Material plastisch und ohne Rissbildung auf diese Bewegung reagiert.

Zudem soll das Injektionsmittel kein oder allenfalls nur ein geringes Schwindverhalten aufweisen, da es durch Schwinden zur Ausbildung von Wegsamkeiten in bereits injizierten Bereichen der Kontaktfuge kommen kann.

Hydraulische Anforderungen

Im Rahmen des Planfeststellungsverfahrens zur Stilllegung des Endlagers für radioaktive Abfälle Morsleben[45] wurde die Anforderung an Baustoffe für Streckenverschlussbauwerke gestellt, dass diese eine Permeabilität von unter \(k \leq 10^{-19} \) m² aufweisen. Diesen Wert müssen die einzusetzenden Injektionsmaterialien nicht aufweisen, jedoch sollten diese möglichst geringe Permeabilitäten aufweisen, damit diese die Wegsamkeiten in der Kontaktzone möglichst effektiv abdichten können.

Thermische Anforderungen

Chemische Anforderungen

4.3 Verfügbare Injektionsmaterialien für den Einsatz im Salz

Zur Abdichtung der Kontaktfläche eignen sich die Injektionsmaterialien, die im Kapitel 4.2 „Anforderungen an Injektionsmaterialien im Salz“ aufgestellten Anforderungen erfüllen. Um diese Anforderungen zu erfüllen, müssen die Injektionsmaterialien gewisse Materialeigenschaften aufweisen:

- Lösungsunfähig gegenüber den Salzmineralen der Streckenkontur
- Beständig gegenüber salinaren Lösungen
- Geringe Partikelgröße, um in Wegsamkeiten mit Öffnungsweiten unter 100 µm eindringen zu können
- Möglichst geringe Abbindetemperaturen
- Niedriges Schwindverhalten
- Mechanische Stabilität gegenüber Verformung
- Gute Haftzugfestigkeit im Kontakt mit Salz
- Ausreichend lange Verarbeitungszeiten

Als partikelhaltige Injektionsmittel werden zu Injektionszwecken üblicherweise Zemente oder Feinstzemente eingesetzt. Die Feinstzemente weisen eine wesentliche geringere Korngröße als Zemente auf und können daher in Wegsamkeiten mit geringeren Öffnungsweiten eindringen. Um zu
gewährleisten, dass partikelgestützte, hydraulisch abbindende Injektionsmaterialien chemisch kompatibel sind mit dem Salzgebirge, zutretenden Lösungen sowie dem Baustoff des Streckenverschlussbauwerks, müssen diese in Abhängigkeit der Standortsituation ausgewählt werden. Als partikelgestützte Injektionsmaterialien zur Kontaktfugeninjektion eignen sich sowohl fein aufgemahlene Salzbetone als auch sorgelbasierte Materialien. Diese enthalten als Bindemittel Magnesiumoxid und als Anmischflüssigkeit MgCl₂-Lösung. Um in die Wegsamkeiten mit geringen Öffnungsweiten im Bereich der Kontaktfuge eindringen zu können, müssen die Injektionsmaterialien geringe Korngrößen (d₉₅ < ca. 30 µm) aufweisen.

Üblicherweise im Rahmen von Verfestigungs- und Abdichtinjektionen eingesetzte partikelfreie Injektionsmaterialien sind Kunstharze sowie Wassergläser. Um Kunstharze im Kontakt mit Salzmineralen einsetzen zu können, muss vorab deren Eignung für den Einsatz im Salinar nachgewiesen sein. Bei einigen Kunstharzen kann die Polymerisation im Kontakt mit dem Salinar bzw. salinaren Lösungen beeinträchtig sein, was zu geringen Festigkeiten und Haftzugfestigkeiten sowie einer eingeschränkten Erhärtung führt [41]. Daher eignen sich nur einzelne der üblicherweise zu Injektionszwecken eingesetzten Kunstharze für die Kontaktfugeninjektion.

Im Vergleich zu partikelgestützten Injektionsmaterialien oder Kunstharzen wird Natronwasserglas im Rahmen von Injektionsarbeiten zwar im geringeren Umfang eingesetzt, gehört jedoch trotzdem zu den üblicherweise eingesetzten Injektionsmaterialien. Als gängiges Verfahren ist hier das Joosten-Verfahren zu nennen, beidem das Natronwasserglas mit einem Härtemittel zusammen injiziert wird.
Aufgrund von Reaktionen zwischen dem Salzgebirge und Natronwasserglas, auf die im Folgenden noch eingegangen wird, kann Natronwasserglas bei Injektionsarbeiten im Salinar als Einzelkomponente ohne Härtemittel injiziert werden.

Zusammenfassend lässt sich festhalten, dass es zwei Materialgruppen gibt, die sich prinzipiell für den Einsatz im Salinar und zur Kontaktfugeninjektion eignen:

Partikelhaltige Injektionsmaterialien
- Feinst aufgemahlene Sorelbetone
- Feinst aufgemahlene Salzbetone
- Kaltbitumen

Partikelfreie Injektionsmaterialien
- Natronwasserglas
- Kunstharze

Innerhalb dieser Materialgruppen sind teilweise mehrere unterschiedliche Injektionsmaterialien verfügbar. Für die im Rahmen dieser Arbeit durchgeführten Untersuchungen wurden Injektionsmaterialien ausgewählt, für die bereits im Rahmen anderer Arbeiten/ Forschungsvorhaben Injektionsversuche an Streckenverschlussbauwerken oder zur Vergütung von Auflockerungszonen im Salz durchgeführt wurden und die prinzipielle Eignung der Materialien aufgezeigt wurde (Tab. 9 und Tab. 10). Die im Rahmen dieser Untersuchungen eingesetzten und nachfolgend als geeignet erachteten Materialien sind in Tab. 12 zusammengestellt und kommen bei den weiteren Versuchen als Stellvertreter für die fünf Materialgruppen zum Einsatz.

Tab. 12: Zusammenstellung der fünf ausgewählten Injektionsmittel

<table>
<thead>
<tr>
<th>Materialgruppe</th>
<th>partikelgestützt</th>
<th>partikelfrei</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injektionsmittel</td>
<td>Feinst-magnesiabinder</td>
<td>Feinstzement</td>
</tr>
<tr>
<td>IM 4+</td>
<td>Ultrafin 12</td>
<td>2K-Bitumen</td>
</tr>
<tr>
<td>K-UTEC</td>
<td>HeidelbergCement</td>
<td>TU Freiberg</td>
</tr>
</tbody>
</table>

Im Folgenden werden die Injektionsmittel, die für die Kontaktfugeninjektion ausgewählt wurden vorgestellt. Hierbei wird auf die Materialeigenschaften der Injektionsmittel, wie z.B.
Zusammensetzungen, Festigkeiten, Abbindeverhalten sowie die Beständigkeit unter salinaren Bedingungen eingegangen.

4.3.1 Partikelgestützte Injektionsmaterialien

Feinstmagnesiabinder IM 4+

Tab. 13: Informationen zur Zusammensetzung und zum Mischungsverhältnis von „IM 4+“[62]

<table>
<thead>
<tr>
<th>Mischungsverhältnis IM 4+</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IM</td>
<td>56,70 Gew.-%</td>
</tr>
<tr>
<td>S30-Lösung</td>
<td>42,79 Gew.-%</td>
</tr>
<tr>
<td>Woerment</td>
<td>0,51 Gew.-%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zusammensetzung IM</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MgO < 20 µm</td>
<td>20-30 Gew.-%</td>
</tr>
<tr>
<td>Dolomitkalkhydrat < 20 µm</td>
<td>0-1 Gew.-%</td>
</tr>
<tr>
<td>Brucit < 20 µm</td>
<td>0-1 Gew.-%</td>
</tr>
<tr>
<td>Anhydrit < 20 µm</td>
<td>70-80 Gew.-%</td>
</tr>
</tbody>
</table>

Der Injektionsmörtel IM 4+ enthält ausschließlich Inhaltsstoffe, die gemäß Gesundheitsschutz-Bergverordnung § 4 Abs. 1 für den untertägigen Einsatz zugelassen sind. Die Vorgängermörtel (IM 3 und IM 3-mod) wurden erfolgreich im Vorhaben CARLA sowie auf der Schachtanlage Asse II eingesetzt[31; 34].

Feinstzement Ultrafin 12:

Tab. 14: Rheologische Daten von Ultrafin 12 bei unterschiedlichen Suspensionsdichten[63]. Die dargestellten Werte beziehen sich auf Suspensionen die mit Leitungswasser hergestellt wurden.

<table>
<thead>
<tr>
<th>Labor-Nr.</th>
<th>W/F-Wert</th>
<th>Marshzeit (s)</th>
<th>Suspensionsdichte [kg/m³]</th>
<th>Wasserabsetzen [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-07-815</td>
<td>2,0</td>
<td>30</td>
<td>1.291</td>
<td>4,2</td>
</tr>
<tr>
<td>2010-07-816</td>
<td>1,8</td>
<td>32</td>
<td>1.319</td>
<td>3,5</td>
</tr>
<tr>
<td>2010-07-817</td>
<td>1,6</td>
<td>32</td>
<td>1.355</td>
<td>2,3</td>
</tr>
<tr>
<td>2010-07-818</td>
<td>1,4</td>
<td>33</td>
<td>1.395</td>
<td>0,7</td>
</tr>
<tr>
<td>2010-07-819</td>
<td>1,2</td>
<td>36</td>
<td>1.447</td>
<td>0,0</td>
</tr>
<tr>
<td>2010-07-820</td>
<td>1,0</td>
<td>41</td>
<td>1.512</td>
<td>0,0</td>
</tr>
</tbody>
</table>

Um die Anmischflüssigkeit für die Suspension mit der 90 %-NaCl gesättigten Lösung herzustellen, wurden 322 Gramm NaCl in einem Liter Wasser bei 20° C gelöst. Sowohl bei der mit Leitungswasser als auch bei der mit 90%-NaCl gesättigter Lösung angemischten Suspension wurde das gleiche Volumen an Flüssigkeit verwendet. Da die verwendeten Flüssigkeiten unterschiedliche Dichten haben, betrug der W/Z-Wert bei der Suspension mit Leitungswasser 1,4 und bei der Suspension mit 90%-NaCl gesättigter Lösung 1,65.

2K-Bitumen

Im Bauwesen, Wasser- und Deponiebau kommt Bitumen/Asphalt als Baustoff zu Abdichtungszwecken oft zum Einsatz. Der Hauptvorteil dieses Baustoffes liegt darin, dass er plastisch auf Deformationen reagiert und unter Beanspruchung erst bei starker Deformation zur Rissbildung neigt. Üblicherweise werden Heißeinbauverfahren verwendet, die jedoch für die Kontaktfugeninjektion im Salinar nicht eingesetzt werden können, da es bei der Abkühlung des Bitumens zu starken Volumenkontraktionen kommt, das Verfahren nicht immer genehmigungsfähig ist und spezielle Kalisalze bei den Einbautemperaturen nicht stabil sind und unter der Abgabe von Kristallwasser zerfallen[54].

Daher wurde vom Institut für Bergbau der TU Freiberg ein spezielles Zweikomponentenbitumen (2K-Bitumen) entwickelt, das unter Umgebungstemperatur verarbeitet und injiziert werden kann. Das 2K-Bitumen besteht zum einen aus einem speziell aufgemahlenen Hartbitumen (H 165/175); die zweite Komponente ist ein entaromatisierter Kohlenwasserstoff (Hydroseal G232 H). Die beiden Bestandteile werden im Massenverhältnis von 48 zu 52 (Hartbitumen zu Hydroseal) miteinander vermischt[54].

Entscheidend für die Eigenschaften des 2K-Bitumens ist die Korngrößenverteilung des eingesetzten Hartbitumens. Folgende Information wurde hierzu von Dr. Gruner, einem Mitarbeiter der TU Freiberg gegeben: „Je kleiner die Korngröße des Hartbitumens ist, desto schneller steigt es an und desto schwieriger ist das Rühren. Um die Topfzeit auf ca. 15 Minuten zu verlängern, wurde für technische Anwendungen die Körnung in Richtung d₅₀ ≤ ca. 150 µm verschoben. Die maximale Korngröße sollte
aber dann 0,5 mm nicht übersteigen. Mit gröberem Material wird eine Entmischung beobachtet. Sonst
findet keine Entmischung oder Sedimentation statt." Nähere Informationen zum 2K-Bitumen finden
sich in der Patentschrift „Verfahren und Zusammensetzung zum Abdichten von Strecken im Bergbau
und/oder eines Baukörpers[54].

Das von der TU Freiberg bereitgestellte gemahlene Hartbitumen enthielt vermutlich durch den
Transport einige größere Agglomerate, die sich unter geringer mechanischer Belastung in die einzelnen
Partikel zerteilen ließen. Die Agglomerate wurden zerkleinert und anschließend wurde das
Hartbitumen mit einer Analysesiebmaschine vom Typ „Haver EML 200 Digital T“ 20 Minuten pro Probe
bei einer hohen Schwingungsintensität trocken gesiebt. Hierbei kam es verbreitet zu Anhaftungen des
Hartbitumens an den Rändern der Siebe, was zu einem Massenverlust von 13,6 % im Laufe des
Siebdurchgangs geführt hat.

Beim Sieben wurde festgestellt, dass sich die Maschen der Siebe mit einer Maschenweite ≤ 180 µm
zugesetzt haben. Das bedeutet, dass die Siebdurchgangsline (Abb. 6) unterhalb dieses Bereichs nicht
repräsentativ ist. Die Analyse zeigt jedoch deutlich, dass ca. 25 % des Hartbitumens eine Korngröße
von über 300 µm hat.

Abb. 6: Siebdurchgangsline des Hartbitumens

Das 2K-Bitumen wurde bisher unter anderem im Vorhaben CARLA[31] zur Kontaktfugeninjektion eines
Versuchsbauswerks eingesetzt und im Rahmen der Dissertation von Kaledin wurde eine Betonierfuge
(Neu auf Alt) zwischen zwei MgO-Betonplatten verpresst[41].

4.3.2. Partikelfreie Injektionsmaterialien

Natronwasserglas 37/40:

Als Wasserglas werden glasig erstarrte Schmelzen von Alkalimetallsilikaten sowie deren wässrige
Lösungen bezeichnet. Unterschieden wird hierbei zwischen Hart- und Weichgelen, wobei die
Weichgele einen Wasseranteil zwischen 66 und 70 Vol.% besitzen und Hartgele 20 bis 30 Vol% Wasser
enthalten[65]. Je geringer der Wassergehalt des Wasserglases ist, desto höher ist seine Dichte. Daher
werden Wassergläser nach Ihrer Grädigkeit unterschieden, wobei dieser Wert sich auf die Dichte
bezieht. Für Injektionen im Salinar werden meist Wassergläser mit einer Grädigkeit von 37/40 Grad
Baumé eingesetzt, was einer Dichte zwischen 1,344 und 1,382 g/cm³ bei 15° C entspricht. Das Natronwasserglas 37/40 wird aufgrund des im Vergleich zu anderen Wassergläsern geringen SiO₂-Anteils eingesetzt, da durch einen geringeren SiO₂-Anteil die Viskosität verringert wird [110]. Zusätzlich zum Natronwasserglas der Grädigkeit 37/40 werden auch Natronwassergläser der Grädigkeit 50/52 bei Injektionen im Salz eingesetzt [110]. Diese haben eine höhere Dichte, eine höhere Viskosität sowie einen höheren SiO₂-Anteil bzw. einen geringeren Wassergehalt als die Natronwassergläser der Grädigkeit 37/40 [110]. In Tab. 15 sind der Anteil an SiO₂ sowie die Dichte für Natronwassergläser unterschiedlicher Grädigkeit angegeben.

Tab. 15: Kennwerte von Natronwassergläsern mit verschiedenen Grädigkeiten [110].

<table>
<thead>
<tr>
<th>SiO₂ [Ma. %]</th>
<th>Dichte [g/cm³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWG 37/40</td>
<td>27,3</td>
</tr>
<tr>
<td></td>
<td>1,34 – 1,38</td>
</tr>
<tr>
<td>NWG 40/42</td>
<td>30,0</td>
</tr>
<tr>
<td></td>
<td>1,38 – 1,41</td>
</tr>
<tr>
<td>NWG 48/50</td>
<td>32,4</td>
</tr>
<tr>
<td></td>
<td>1,49 – 1,53</td>
</tr>
<tr>
<td>NWG 50/52</td>
<td>34,0</td>
</tr>
<tr>
<td></td>
<td>1,55 – 1,56</td>
</tr>
<tr>
<td>NWG 58/60</td>
<td>37,0</td>
</tr>
<tr>
<td></td>
<td>1,67 – 1,71</td>
</tr>
</tbody>
</table>

zunehmender Dauer diffundieren Natrium-Ionen durch die gelierte Schicht und bewirken auch im Inneren der Wegsamkeit eine Aushärtung des Wasserglases, bis sämtliches Wasserglas geliert und die Wegsamkeit abgedichtet ist [53]. Im Laufe des Gelierungsprozesses gibt das Wasserglas eine wässrige Lösung, die sogenannte Synäreselösung ab.

Abb. 7: Modellhafte Darstellung des Ablaufes einer Wasserglasinjektion in eine Wegsamkeit im Steinsalz. Die fortschreitende Injektion dringt immer weiter ein, bis die komplette Wegsamkeit gefüllt ist. Im Kontakt mit dem Steinsalz setzt eine Gelierung des Wasserglases ein, die im Modell durch die unterschiedlich großen Kügelchen dargestellt ist [53].

Im Rahmen der Versuche bei denen NaCl-Lösung in das Natronwasserglas vermischt wurde (Mengenverhältnis 1:1) zeigte sich, dass sich zunächst ein fester Körper bildete (ein bis zwei Minuten nach dem Zusammenmischen) und sich nachfolgend zunehmend infolge der Synärese Überstandslösung auf dem vergelten Natronwasserglas bildete. 22,5 Stunden nach dem Vermischen des Natronwasserglases mit der NaCl-Lösung hatten sich etwas mehr als 40 ml Synäreselösung gebildet [89]. Ausgewählte Aufnahmen der aus Natronwasserglas und NaCl-Lösung erstellten Probenkörper sind in Abb. 9 dargestellt.

Die bisherigen Untersuchungen zur Bildung von Synäreselösung beim Erhärten von NWG 37/40 im Kontakt mit Steinsalz und NaCl-Lösungen zeigen zum einen, dass die Synäreselösung im Halit fixiert werden kann. Zum anderen machen die Versuche aber auch deutlich, dass bei der Mischung mit NaCl-gesättigten Lösungen eine deutliche Bildung von Überstandslösung im Laufe des Synäreseprozesses stattfinden kann.

In Versuchen, bei denen unter Tage der konturnahe Gebirgsbereich im Steinsalz mit Wasserglas injiziert wurde, konnte gezeigt werden, dass durch die Wasserglasinjektion eine Verringerung der Permeabilität in diesem Bereich erzielt werden konnte[53].

Kunstharz - Denepox 40:

Das Kunstharz Denepox 40 wurde im Rahmen des Forschungsvorhabens Carla zur Injektion der Kontaktfläche eines Streckenverschlussbauwerks eingesetzt, wobei die Permeabilität um mehrere Größenordnungen reduziert wurde.

4.4 Beständigkeit von Injektionsmaterialien unter salinaren Bedingungen

Damit die in den Bereich der Kontaktfläche eingebrachten Injektionsmaterialien über den Zeitraum bis zum wirksamen Einschluss der eingelagerten Abfälle durch die mit Salzgrus versetzten Strecken wirksam sind, ist vor deren Einsatz die Beständigkeit der Injektionsmaterialien für den Funktionszeitraum des Streckenverschlussbauwerks aufzuzeigen. Eine Möglichkeit, die Alterungsbeständigkeit aufzuzeigen sind Vergleiche mit natürlichen Analoga, also Materialien, die den eingesetzten Injektionsmitteln sehr ähnlich sind und natürlicherweise in Salzlagerstätten vorkommen.

Bei der Aushärtung von Wasserglas bilden sich SiO₂-Phasen. Es gibt in der Natur eine Reihe von natürlichen SiO₂-Phasen wie z.B. Opal oder Quarz, wobei der Opal keine interne Kristallstruktur aufweist und aus hydratisiertem Kieselgel besteht und somit geochemisch nah mit den Silikatgruppen des gelierten Wasserglases verwandt ist. In marinen Evaporitlagerstätten wie z.B. dem Zeche Salinar kommen sowohl Opal oder Quarz natürlicherweise vor[66]. Ein weiteres Natürliches Analogon für die Bildung von SiO₂-Verbündungen aus Silikatgelen stellen die Cherts (sedimentär entstandene Silikatgesteine) der Sodaseen des ostafrikanischen Grabens dar, die Alter zwischen 300.000 und 780.000 Jahren aufweisen. In diesen Seen kommen neben amorphen Kieselsäure zahlreiche Na-Hydrosilikate vor, die chemisch mit dem Wasserglas verwandt sind und Vorstufen für reine SiO₂-Verbindungen sein sollen[53].

Durch eine Reihe unterschiedlicher Faktoren (Sonnenstrahlung, Radioaktivität, mechanische oder chemische Einwirkungen, Temperatur- oder Feuchtigkeitsschwankungen) kann es im Laufe der Zeit zu einer irreversiblen Veränderung der Struktur und Zusammensetzung von Polymerwerkstoffen kommen[41]. Unter Laborbedingungen ist es möglich, diese Einflussgrößen zu simulieren und somit Aussagen über die Beständigkeit von Kunststoffen zu treffen. Hierbei werden die Probenkörper Zerstörungsfaktoren ausgesetzt, die deutlich größer als unter realitätsnahen Einsatzbedingungen sind, wodurch ein um das 5 bis 25-fache beschleunigtes Altern von Kunststoffen hervorgerufen werden kann[41]. In Untersuchungen mit beschleunigten Altern unter der Einwirkung von Salzlösung bei 7°C konnte für ein Polymerinjektionsmaterial der Firma DeNeef gezeigt werden, dass dieses über einen Zeitraum von 110 Jahren keine Verschlechterung der Eigenschaften erfährt[41].

Für den Injektionsmörtel IM 4+ wird vom Hersteller angegeben, dass dieser langzeitbeständig gegenüber hochkonzentrierten MgCl₂-bzw. MgSO₄-Lösungen ist, im Kontakt mit Wasser oder schwach mineralisierten Lösungen jedoch nur bedingt beständig ist[62]. Bei Bauwerken, die aus Magnesiabeton errichtet werden, sind zutretende Lösungen mit einem MgCl₂-Gehalt von unter 50 g/Kilo H₂O gegenüber dem Baustoff lösungsfähig. Bei höheren MgCl₂-Konzentrationen ist der Magnesiabeton jedoch langzeitstabil[34].

Salzbeton ist im Kontakt mit NaCl-gesättigten Lösungen stabil, jedoch kommt es im Kontakt mit Mg-reichen Lösungen zum Herauslösen der Calcium-Silikat-Phasen des Zementsteins[59].

Kohlenwasserstoffvorkommen wurden in einer Vielzahl deutscher Salzbergwerke (Beispielsweise: Sigmundshall, Siegfried - Giessen, Asse, und Neuhof - Ellers) beobachtet, weswegen Sie zum natürlichen Stoffbestand von Salzgesteinen gezählt werden[64]. Daher wird auch Bitumen als ein natürlicherweise in Salzlagerstätten vorkommender Stoff, der im Salzgebirge auch über lange Zeiträume als chemisch stabil anzusehen ist, betrachtet[41]. Jedoch ist aus Ölfeldern der Vorgang der mikrobiellen Degradation bekannt. Zwar herrschen in Ölfeldern andere geochemische Bedingungen als in Salzstöcken, trotzdem soll an dieser Stelle auf die Möglichkeit hingewiesen werden, dass es durch Bakterien zu einem Abbau, beziehungsweise der Veränderung der Zusammensetzung des Bitumens kommen kann. Die Bakterien können sowohl bei aeroben als auch anaeroben Bedingungen leben, wobei die optimalen Bedingungen für die aeroben Bakterien bei Temperaturen zwischen 20°C und 50°C

54
herrschen. Die aeroben Bakterien bevorzugen einen Gehalt von über 8 mg/l gelösten Sauerstoff im Wasser und fast H₂S freies Öl, da dieses für die aeroben Bakterien giftig ist[93].

Von der Nagra wurden Versuche zum Abbau von Asphalt bzw. Bitumenschichten durch Mikroorganismen durchgeführt die zeigen, dass pro Jahr zwischen 20 und 50 g Bitumen pro m² durch Mikroorganismen unter aeroben Bedingungen abgebaut werden können und etwa 0,2 bis 0,5 g Bitumen pro Jahr unter anaeroben Bedingungen abgebaut werden. Diese Untersuchungen zeigen auch, dass die Mikroorganismen bei Temperaturen von 30°C eine höhere Aktivität als bei 10°C haben und relativ unempfindlich gegenüber Veränderungen des pH-Werts sind[94]. Untersucht wurden die folgenden Mikroorganismen: Pseudomonas aeruginosa sowie zwei unbekannte Arten der Gattung Streptomycyes und Alcaligenes.

5 Laborative Charakterisierung der rheologischen Eigenschaften ausgewählter Injektionsmaterialien

Um ein besseres Verständnis für die Fließeigenschaften und das Eindringverhalten der Injektionsmaterialien in Spalten und Risse zu bekommen, wurden eine Reihe von Materialkennwerten der Injektionsmaterialien im Labor erfasst. Die Messungen wurden bei bergbaulichen Temperaturen von 30 und 40°C durchgeführt, da die ermittelten Materialparameter temperaturabhängig sind. Die im Rahmen der Labormessungen ermittelten Materialkennwerte sind:

- Dichte
- Viskosität (Rheometer und Marschtrichter)
- Benetzungswinkel im Kontakt mit Steinsalz
- Oberflächenspannung

Üblicherweise werden zur Beurteilung der rheologischen Eigenschaften der jeweiligen Injektionsmaterialien auf den Produktdatenblättern die Viskosität bei Temperaturen von 20 oder 25°C sowie die Dichte als einzige Suspensionsparameter angegeben. Dies ermöglicht eine erste Einschätzung des Fließverhaltens und somit näherungsweise auch des Eindringverhaltens der Injektionsmaterialien in Wegsamkeiten. Um eine präzisere Beurteilung des Eindringverhaltens durchzuführen muss zusätzlich zur Viskosität noch der Benetzungswinkel zwischen Injektionsmaterial und umgebenden Gestein sowie die Oberflächenspannung des Injektionsmaterials ermittelt werden.

Im Folgenden werden die einzelnen Messverfahren vorgestellt, bevor anschließend auf die Messwerte eingegangen wird.

5.1 Aufbau der Messungen

5.1.1 Viskositätsmessungen

Die Viskositätsmessungen werden mittels eines Scherrheometers nach dem Platte/Platte Messsystem durchgeführt, wobei die dynamische Viskosität des Injektionsmittels ermittelt wird. Hierbei ist es möglich die Platten zu beheizen, um die Messungen bei unterschiedlichen Temperaturen durchzuführen. Zudem besteht die Möglichkeit, die Viskositätsveränderung über die Zeit zu erfassen. Mithilfe der Abhängigkeit zwischen Viskosität und Zeit lässt sich die optimale Verarbeitungszeit des jeweiligen Injektionsmittels ermitteln.

Die Scherkkräfte, die im Baustoff auftreten haben zu unterschiedlichen Zeiten sehr unterschiedliche Werte. Während des Anmischvorgangs des Baustoffes können Schergeschwindigkeiten in der
Größenordnung von 1000 s\(^{-1}\) auftreten. Während der Lagerung des Baustoffes zwischen dem Anmischen und dem Verpressen treten sehr geringe Schergeschwindigkeiten von unter 1 s\(^{-1}\) auf.

Für Blut in Kapillaren werden in der Literatur Schergeschwindigkeiten zwischen 0,1 und 100 s\(^{-1}\) angegeben[71]. Der Durchmesser von Blutkapillaren liegt im Mittel bei 8 µm[72]. Bei Injektionen in der Medizin kommen üblicherweise Nadeln mit einem Innendurchmesser von einigen hundert µm zum Einsatz. Für medizinische Injektionen wird eine Schergeschwindigkeit von 1000 bis 10000 s\(^{-1}\) angegeben[71]. Da die Öffnungsweite der zu injizierenden Kontaktfuge zwischen der Öffnungsweite der Blutkapillaren und der Injektionsnadeln liegt, wurde eine Schergeschwindigkeit von 100 s\(^{-1}\) für die in dieser Arbeit durchgeführten Viskositätsmessungen ausgewählt.

Bei der Platte/Platte Messmethode wird die zu messende Flüssigkeit zwischen zwei Platten gegeben und anschließend wird die obere Platte in Rotation versetzt. Über die Messung des Abstands der Platten zueinander und der Drehzahl der oberen Platte können die Schergeschwindigkeit (Gleichung 1) sowie die Schubspannung (Gleichung 2) errechnet werden. Wenn sowohl die Scherrate als auch die Schubspannung bekannt sind, kann auch die Viskosität der Flüssigkeit im Messspalt bestimmt werden (Abb. 11). Die Messungen erfolgten mit dem Rheometer AR 500/1000 der Firma TA Instruments.

\[
\text{Scherkraft} = \frac{R}{D} \times \omega \quad (1)[75]
\]

\[
\text{Schubspannung} = \frac{2}{\pi R^3} \times T \quad (2)[75]
\]

Bei den Messungen mit dem 2K-Bitumen führte die Korngröße der Hartbitumenstücke von teilweise über 300 µm zu Problemen. Der geplante Abstand der Platten des Rheometers von 100 µm ließ sich aufgrund der Korngröße des Hartbitumens nicht einstellen.

5.1.2 Rheologie – Marshtrichter

Eine einfache Methode, mit der sich die Fließfähigkeit von Baustoffen ermitteln lässt, ist der Marshtrichter. Der Marshtrichter ist ein Kunststofftrichter mit einem Fassungsvermögen von 1,5 Litern, der am unteren Ende eine Auslaufdüse mit einem Durchmesser von 8 mm hat. Für die Messung wird der Trichter schwingungsfrei ca. 150 mm über dem Auffangbehälter befestigt. Der Auffangbehälter muss eine Markierung bei 1000 ml Füllvolumen aufweisen. Nähere Informationen zum Aufbau und der Durchführung des Konsistenzprüfungsverfahrens für Baustoffe mittels Marshtrichter sind in DIN 4127 gegeben[76].

Die Marshtrichter-Viskosität bzw. Trichterauslaufzeit ist das Verhältnis der Geschwindigkeit, mit der die Probenflüssigkeit durch die Auslaufdüse austritt, zu der Kraft, mit der die Flüssigkeit durch die Auslaufdüse drückt. Sie wird gemessen in Sekunden, die 1000 cm³ Probenflüssigkeit benötigt, um aus dem Marshtrichter durch die Auslaufdüse zu fließen. Häufig wird auch die Zeit bis zum vollständigen Ausfließen des Prüfmediums gemessen. Auf die zuletzt genannte Untersuchung wurde jedoch im Rahmen des durchgeführten Arbeitsprogramms verzichtet[77].
5.1.3 Dichtemessungen

Für die Dichtemessungen steht das Dichtebestimmungsset YDK 01 der Firma Sartorius zur Verfügung (Abb. 13), welches auf einer Präzisionswaage montiert wird. Bei der Dichtebestimmung mit dieser Apparatur wird das „Archimedische Prinzip“ verwendet. Das heißt, dass ein Körper beim Eintauchen in eine Flüssigkeit eine nach oben gerichtete Auftriebskraft erfährt, die den gleichen Betrag besitzt, wie die Gewichtskraft des verdrängten Flüssigkeitsvolumens. Wenn die Dichte des Glassenkkörpers, der in die zu untersuchende Flüssigkeit getaucht wird, bekannt ist, dann lässt sich mit Hilfe einer hydrostatischen Waage durch wägen des Glassenkkörpers an Luft und in der zu untersuchenden Flüssigkeit die Dichte der Flüssigkeit ermitteln (Gleichung 3).

Zur Dichtebestimmung von Flüssigkeiten werden diese in einem kleinen Becherglas auf die Waage gestellt. Durch das Befestigen eines Thermometers am Rand des Becherglases lässt sich die Temperatur bei der Dichtemessung erfassen.

\[\rho = \frac{A}{A-B} \cdot \rho_f \]
\[(3) \]

\(\rho = \) Dichte des Glassenkkörpers [g/cm³]
\(\rho_f = \) Dichtewert der zu untersuchenden Flüssigkeit [g/cm³]
\(A = \) Gewicht des Glassenkkörpers in der Luft [g]
\(B = \) Gewicht des Glassenkkörpers in der zu untersuchenden Flüssigkeit [g]

5.1.4 Grenzflächenspannung

Abb. 14: Aufbau einer Wilhelmy-Waage

Mit der folgenden Gleichung lässt sich die Grenzflächenspannung berechnen:

\[\sigma = \frac{P}{2a(a+b)} \]

\(\sigma \) = Grenzflächenspannung [mN/mm]

\(P \) = Kraft, die benötigt wird, um das Plättchen in der ursprünglichen Lage zu halten [N]

\(a \) = Breite des Platinplättchens [mm] (Das verwendete Plättchen hat eine Länge von 10 mm bei einer Breite von 19,9 mm und einer Dicke von 0,2 mm)

\(b \) = Länge des Platinplättchens [mm]

Abb. 15: Links: Benetzte Wilhelmy-Platte. Rechts: Wilhelmy-Platte der Länge \(b \) und Breite \(a \) die mit der Kraft \(P \) in der ursprünglichen Lage gehalten wird.
5.1.5 Kontaktwinkel

Die Kontaktwinkelmessungen werden nach der Methode des liegenden Tropfens durchgeführt. Hierbei wird die zu untersuchende Flüssigkeit auf eine Oberfläche gegeben und der Winkel, der sich im Dreiphasen Kontakt zwischen Flüssigkeit, Feststoff und Gasphase bildet, wird per Kamera erfasst. Die Aufnahme wird anschließend am PC graphisch ausgewertet.

![Abb. 16: Kontaktwinkelmessgerät des Typs OCA 15.](image)

5.2 Durchführung von Messungen zur Bestimmung der rheologischen Eigenschaften ausgewählter Injektionsmaterialien

Bei den Suspensionen wurden die Feststoffe unter langsamen Rühren zur Flüssigkeit hinzugegeben bevor anschließend mit dem Milchaufschäumer beide Materialien intensiv vermisch wurden.
Abwägung der Komponenten erfolgte mit der Feinwaage BP 310 S der Firma Sartorius, die eine Genauigkeit von 0,001 Gramm hat.

5.2.1 Viskositätsbestimmung

Bei der Viskositätsbestimmung mittels Platte-Platte Verfahren wurden 3 ml des Injektionsmittels nachdem dieses angemischt wurde, mit einer Pipette auf die untere Platte des Rheometers gegeben. Durch anschließendes Herunterfahren bei gleichzeitigem Drehen der oberen Platte auf den Plattenabstand von 100 µm verteilte sich das Injektionsmittel im Messspalt. Falls der Messspalt nicht vollständig mit dem Injektionsmittel gefüllt war, wurde die obere Platte nach oben gefahren und unter der Zugabe von etwas Injektionsmittel wurde der Vorgang wiederholt. Sobald der Messspalt vollständig mit Injektionsmittel gefüllt war konnte die Messung beginnen. Vom Anmischen des Injektionsmittels bis zum Beginn der Messung vergingen 2 bis 4 Minuten. Während des Befüllens des Messspalts sowie während der Messung wurde die untere Platte auf die geforderte Temperatur (30 oder 40°C) erwärmt. Um sicherzustellen, dass das Injektionsmittel bei Beginn der Messung die geforderte Temperatur hatte, wurde das Injektionsmittel nach dem Befüllen eine Minute erwärmt, bevor die Viskositätsmessung gestartet wurde.

5.2.2 Rheologie – Marshtrichter

5.2.3 Dichtemessung

Das Injektionsmittel wurde während des Anmischens auf einer Heizplatte auf 30 bzw. 40° C erwärmt, wobei der Temperaturverlauf mit einem Thermometer permanent überwacht wurde. Das Wasserglas wurde unter ständigem Rühren ebenfalls auf der Heizplatte auf die geforderte Temperatur erwärmt. Zudem wurden der Glaskörper und das Becherglas, in dem die Messung stattfand, aufgewärmt. Während der Dichtemessung wurde die Temperatur mit Hilfe eines am Becherglas befestigten Thermometers erfasst. Üblicherweise vergingen zwischen dem Anmischen des Injektionsmittels und der Dichtebestimmung 60 bis 90 Sekunden.

5.2.4 Grenzflächenspannung

Nach dem Anmischen wurde das Injektionsmittel in den Probenhalter gegeben und die erste Messung erfolgte 8 Minuten nach der Herstellung des Injektionsmittels. Der Probenhalter der Wilhelmy-Waage ist beheizbar und wurde zum Erwärmen der Probe auf die geforderten 30 bzw. 40° C temperiert. Zu Beginn der Messung wurde der mit Injektionsmittel gefüllte Probenhalter soweit nach oben verfahren, bis das Platinplättchen in das Injektionsmittel eintauche. Beim Eintauchen wurde die auf das Platinplättchen ausgeübte Auftriebskraft gemessen. Sobald diese 8,0 mg überschritten hatte wurde die Höhe des Probenhalters als Nulllinie definiert. Anschließend wurde das Platinplättchen 3 mm tief in das Injektionsmittel getaucht und wieder um 3 mm herausgezogen. Danach folgte die eigentliche Messung. Durch das Eintauchen des Plättchens in das Injektionsmittel wurde dieses benetzt. Die benetzende Flüssigkeit übt eine Gewichtskraft auf das Plättchen aus, die gemessen werden konnte und aus der die Oberflächenspannung berechnet wurde.

5.2.5 Kontaktwinkel

Für die Kontaktwinkelmessungen sollte eine Oberfläche ausgewählt werden, die repräsentativ ist für Oberflächen mit denen das Injektionsmittel bei der Injektion eines Streckenverschlussbauwerkes in Kontakt kommt. Hierbei wurde angenommen, dass mindestens eine Wandfläche der Kontaktfuge das anstehende Steinsalz der Streckenkontur ist und auch Wegsamkeiten der Auflockerungszone, in die das Injektionsmittel eindringen kann, aus Salz bestehen. Daher wurden die Kontaktwinkelmessungen auf Steinsalz durchgeführt.

Es gibt im Wesentlichen zwei verschiedene Oberflächenformen, die natürlicherweise im Salz der Streckenkontur vorkommen. Bedingt durch die Auffahrung der Strecke und des Nachschnitts der Streckenkontur mittels einer Teilschnittmaschine werden Scherkräfte auf das Gestein ausgeübt. Hierdurch kommt es zum Herauslösen einzelner Mineralkörner aus dem Gesteinsverbund (selten) oder zum Zerbrechen der einzelnen Steinsalzkristalle. Wenn die Halitkrystalle zerbrechen, kann dies entweder parallel zu den kristallographischen Flächen geschehen, wobei Steinsalz eine vollkommene
Spaltbarkeit aufweist und sich glatte Spaltflächen bilden. Oder, wenn der Bruch nicht entlang einer der kristallographischen Spaltflächen verläuft, weist Halit einen muscheligen Bruch auf. In Vorversuchen wurden diese beiden Oberflächen hinsichtlich ihrer Kontaktwinkel verglichen, wobei allerdings kein Unterschied feststellbar war.

Zudem wurde versucht, Probenkörper aus feinem (kleiner 125 µm) gepresstem Steinsalzpulver herzustellen, um die große Oberfläche zu simulieren, mit der die Injektionsmittel innerhalb eines Risses in Kontakt kommen. Die Presstabletten wurden 3 Minuten lang bei einem Druck von 40 MPa gepresst. Auch auf den aus Salzpulver hergestellten Presstabletten wurden Kontaktwinkelmessungen durchgeführt. Das Ergebnis war nicht verschieden von dem der zerbrochenen Salzkristalle.

Versuchstechnisch waren die entlang der kristallographischen Spaltflächen vollkommen gespaltenen Salzkristalle am einfachsten zu handhaben, da diese sehr plane, parallele Oberflächen aufwiesen. Dadurch eigneten sie sich bestens für die Messmethode des liegenden Tropfens, bei der der Kontaktwinkel zwischen Injektionsmittel und Salz mittels Kamera erfasst wird.

Die Versuche wurden mit Ausnahme des Wasserglases jeweils in Gruppen zu 6 Einzelversuchen bei je zwei Temperaturstufen durchgeführt. Die gewählten Temperaturen betrugen 30° C und 40° C. Beim Wasserglas wurden aufgrund der schwierigeren Handhabung 17 bzw. 10 Versuche pro Temperaturstufe durchgeführt.
5.3 Rheologische Eigenschaften ausgewählter Injektionsmaterialien – Messergebnisse und Interpretation

Im Folgenden werden die Ergebnisse der Viskositätsmessungen vorgestellt. Die Durchschnittswerte der Einzelmessungen werden in diesem Kapitel vorgestellt und diskutiert. Die Kurvenverläufe der Einzelmessungen, aus denen die Durchschnittswerte gebildet wurden, sind im Anhang abgebildet.

5.3.1 Viskositätsbestimmung

IM 4+

Abb. 17: Mittelwerte der Viskositätsmessungen mit IM 4+ bei 30 und 40°C.

Die für den Feinstsorelmörtel IM 4+ gemessene Viskosität ist in Abb. 17 dargestellt. Bei 30°C steigt die Viskosität der Suspension während der dreißigminütigen Messung von anfangs 249 mPas auf 399 mPas zum Ende der Messung. In der zweiten Hälfte der Messung nimmt die Zunahme der Viskosität pro Zeiteinheit (Viskositätsrate) ab. Bei der Messung bei 40°C ist die Viskosität zu Beginn der Messung mit 194 mPas deutlich niedriger und steigt auf 413 mPas an. Auch hier lässt sich im letzten Drittel der Messung eine Abnahme der Viskositätsrate erkennen. Nach knapp 23 Minuten weist die Suspension bei beiden Temperaturstufen die gleiche Viskosität auf, im weiteren Verlauf hat die Suspension bei 40°C eine höhere Viskosität.

Wie bei den meisten Fluiden sinkt die Anfangsviskosität des IM 4+ bei höherer Temperatur. Infolge einer höheren chemischen Reaktivität bei höheren Temperaturen kommt es auch zu einem schnelleren Ansteifen des Baustoffes. Wenn man die Definition der einzelnen Abschnitte des Aushärteverhaltens von Beton in Abb. 18 zur Interpretation der gemessenen Viskositätsverläufe heranzieht, zeigt das IM 4+ ein frühes Ansteifen. Hierbei verlangsamt sich die Zunahme der Viskosität über die Zeit bis die Erstarrung des Injektionsmittels einsetzt und die Viskosität in kurzer Zeit deutlich ansteigt (Abb. 18).
Ultafin 12

Beim Feinstzement Ultrafin 12 kamen für die Viskositätsmessungen zwei verschiedene Rezepturen zum Einsatz. Bei der ersten Rezeptur mit einem W/Z-Wert von 1,4 wurde Leitungswasser als Anmachlösung verwendet, bei der zweiten Rezeptur wurde eine 90% NaCl-gesättigte Lösung verwendet. Die Mengenanteile von Wasser und Zement wurden vor dem Anmischen abgewogen. Da die Salzlösung eine höhere Dichte aufweist, wurde beim Abwiegen eine Korrektur vorgenommen, sodass beide Suspensionen volumenmäßig mit derselben Flüssigkeitsmenge angemischt wurden.

Abb. 19: Mittelwerte der Viskositätsmessungen mit Ultrafin 12 bei 30 und 40° C. Die grüne als auch die violette Kurve dokumentieren die Mittelwerte der Messungen der mit NaCl-haltiger Lösung angemischten Suspension dar.

Beide Kennlinien der Messungen der mit Leitungswasser angemischten Suspension können in mehrere Abschnitte unterteilt werden (Siehe Abb. 19). Die Messung bei 40° C hat eine Anfangsviskosität von etwa 60 mPas. Sie steigt in den ersten sieben Minuten auf etwa 90 mPas an, anschließend nimmt die
Viskositätsrate ab und erreicht nach 30 Minuten eine Viskosität von etwas über 120 mPas. Bei der Messung bei 30°C sinkt die Viskosität um ca. 3 mPas in den ersten 30 Sekunden, um anschließend für zwei Minuten einen horizontalen Verlauf bei 60 mPas aufzuweisen. Der weitere Verlauf ist durch einen Anstieg der Viskosität ausgezeichnet, der innerhalb der ersten 15 Minuten steiler verläuft als innerhalb des nachfolgenden Versuchszeitraums. Die Viskosität dieser Messung ist nach 30 Minuten mit etwas über 120 mPas identisch mit der Messung bei 40° C.

Die Viskositätsentwicklung der Messungen der mit Salzlösung angemischten Suspension von Ultrafin 12 weisen einen interessanten Verlauf auf. Bei beiden Temperaturstufen sinkt die Viskosität im ersten Drittel der Messung und steigt anschließend wieder langsamer ohne die Anfangswerte zu erreichen, die bei 92 und 89 mPas liegen (30° und 40° C). Das Minimum der Viskosität ist bei der Messung bei 30°C nach knapp vier Minuten erreicht, bei der Messung bei 40°C nach ca. siebeneinhalb bis acht Minuten. Die Viskosität erreicht nach 30 Minuten (Messende) bei der Probe mit 40° C einen Wert von 86 mPas, sie liegt über der Viskosität von 79 mPas bei der Probe mit 30° C. Möglicherweise ist der langsame Anstieg der mit Salzlösung angemischten Suspension auf die verringerte Wasseraktivität von NaCl-Lösungen zurückzuführen, die die Reaktion von Zement verzögert[80].

Die mit Salzlösung angemischte Suspension wies eine ausgeprägte Thixothropie auf. Nach einer zehnminütigen Ruhephase war es möglich, ein 250 ml Becherglas mit der Suspension auf den Kopf zu stellen, ohne dass die Suspension herausfließt. Allerdings war eine Anregungsphase von wenigen Sekunden ausreichend um die Suspension wieder in einen fließfähigen Zustand zu überführen. Thixothrope Flüssigkeiten können eine merkliche Einstellzeit der Viskosität aufweisen[81]. Auf diesen Effekt, der durch die Anfahrchubspannung verursacht wird, ist vermutlich das Sinken der gemessenen Viskosität in den ersten Minuten zurückzuführen.

2K-Bitumen

![Abb. 20: Mittelwerte der Viskositätsmessungen mit dem 2K-Bitumen bei 30 und 40°C.](image)
Mit dem 2K-Bitumen wurden 4 Messungen durchgeführt, davon entfallen drei Messungen auf die Temperaturstufe 30° C, eine Messung wurde bei 40° C durchgeführt. Es wurde nur eine Messung durchgeführt, da die mit dem 2K-Bitumen hergestellte Suspension 12 Minuten nach Beginn der Messung eine Viskosität von 10.000 mPas aufwies und nach 22 Minuten die Viskosität über 37.000 mPas betrug, was einen Einsatz für Injektionszwecke fraglich erscheinen lässt (Vgl. Abb. 20).

Wasserglas

![Diagramm der Viskositätsmessungen mit Wasserglas der Grädigkeit 37/40 bei 30 und 40° C.](image)

Abb. 21: Mittelwerte der Viskositätsmessungen mit Wasserglas der Grädigkeit 37/40 bei 30 und 40° C.

Die Kurvenverläufe der Viskositätsmessungen des Wasserglasses weisen bei beiden Temperaturstufen einen ähnlichen Verlauf auf. In den ersten drei Minuten sinkt die Viskosität um etwa drei bis vier mPas und steigt anschließend leicht zum Ende der Messung hin an (von 57 auf 59 mPas bei 30° C und von 39 auf 41,5 mPas bei 40° C).

Die Mittelwerte der Messungen und insbesondere die Einzelmessungen weisen mit zunehmender Messdauer einen unruhigen Verlauf auf. Das lässt sich wahrscheinlich auf die Ausbildung einer Anhaftung aus vergelten Wasserglas am Drehkörper im Kontaktbereich zwischen Wasserglas und Luft zurückführen (Abb. 22).
Abb. 22: Anhaftungen von vergelten Wasserglas am Drehkörper des Rheometers

Das Wasserglas bestätigt die aus der Arrhenius-Gleichung zu erwartende Abnahme der Viskosität mit zunehmender Temperatur. Die Arrhenius-Gleichung (Gleichung 5) wird in der chemischen Kinetik verwendet, um die Abhängigkeit der Reaktionsgeschwindigkeit von der Temperatur zu beschreiben. Neben der absoluten Temperatur gehen noch die Aktivierungsenergie und die allgemeine Gaskonstante in die Berechnung ein.

\[k = A \times e^{\frac{-EA}{R \times T}} \]

(5)

\(k = \) Reaktionsgeschwindigkeitskonstante
\(A = \) Frequenzfaktor
\(EA = \) Aktivierungsenergie
\(R = \) Universelle Gaskonstante
\(T = \) Absolute Temperatur

Bedingt durch die Zunahme der Reaktionsgeschwindigkeiten bei höheren Temperaturen (Arrhenius-Gleichung), kann eine signifikante Reduktion der Aushärtzeiten von Kunstharzen resultieren[82]. Somit haben Harze bei höheren Temperaturen zwar eine niedrigere Anfangsviskosität, zeigen jedoch mit zunehmender Zeit nach dem Mischen eine stärkere Zunahme der Viskosität. Sowohl die geringere Anfangsviskosität des Harzes bei der höheren Temperatur als auch die beschleunigte Abbindereaktion und schnellere Zunahme der Viskosität sind in Abb. 23 gut zu erkennen.

Zusammenfassung

In Abb. 24 werden die Mittelwerte der einzelnen Viskositätsmessungen zusammenfassend dargestellt. Es lässt sich erkennen, dass Wasserglas von den 5 untersuchten Injektionsmitteln die niedrigste Viskosität im Messzeitraum aufweist. Das 2K-Bitumen weist initial zwar eine geringe Viskosität auf, diese steigt allerdings rasch an, sodass die Injizierbarkeit als fraglich eingeschätzt wird.
Abb. 24: Zusammenstellung der Mittelwerte der Viskositätsmessungen der partikelgestützten Injektionsmittel

Abb. 25: Zusammenstellung der Mittelwerte der Viskositätsmessungen der partikelfreien Injektionsmittel.

Beim Wasserglas ist darauf hinzuweisen, dass es zu einer deutlichen Abnahme der Viskosität von ca. 30% durch die Erhöhung der Versuchstemperatur von 30 auf 40° C kam. Dieser Befund deckt sich mit den von Vogel[52] durchgeführten Untersuchungen (Abb. 26). In Abb. 26 sind die Ergebnisse von Viskositätsmessungen unterschiedlicher Wassergläser bei 21 und 17 Grad dargestellt, wobei sich selbst bei diesem geringen Temperaturunterschied eine merkliche Änderung in der Viskosität einstellt[52].
Abb. 26: Unterschiede in der Viskosität von Wassergläsern in Abhängigkeit von der Temperatur sowie ihrem Wasseranteil (W_{WG}). Untenstehend ist die Dichteänderung von Wassergläsern mit unterschiedlichen Wasseranteilen dargestellt[52].

5.3.2 Rheologie – Marshtrichter

Mit Bezug auf die Ergebnisse der Viskositätsbestimmung mittels Rheometer wurde auf eine Messung der Marshzeit für das 2K-Bitumen bei 40° C verzichtet, da dieses als ungeeignet für Injektionsmaßnahmen eingeschätzt wird. Die Ergebnisse der durchgeführten Messungen sind in Tab. 16 zusammengestellt.

Eine Messung der Auslaufzeit mit dem Injektionsharz Denepox 40 war mit den verfügbaren Messinstrumenten nicht möglich, da beide Reinigungsmittel (Aceton und Methylethylketon) den Kunststoff des Marshtrichters als auch des Auffangbehälters angreifen und auflösen.

Tab. 16: Marshzeiten (in Sekunden) der Untersuchten Injektionsmittel

<table>
<thead>
<tr>
<th>Messung Nr.</th>
<th>Ultrafin 12</th>
<th>IM 4+</th>
<th>Wasserglas 37/40</th>
<th>2K-Bitumen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30° C</td>
<td>40° C</td>
<td>30° C</td>
<td>40° C</td>
</tr>
<tr>
<td>1</td>
<td>10,61</td>
<td>11,26</td>
<td>27,47</td>
<td>24,02</td>
</tr>
<tr>
<td>2</td>
<td>10,47</td>
<td>10,62</td>
<td>26,25</td>
<td>23,40</td>
</tr>
<tr>
<td>3</td>
<td>10,39</td>
<td>11,06</td>
<td>26,82</td>
<td>23,66</td>
</tr>
<tr>
<td>4</td>
<td>10,59</td>
<td>10,84</td>
<td>27,45</td>
<td>23,76</td>
</tr>
<tr>
<td>5</td>
<td>10,30</td>
<td>11,07</td>
<td>28,20</td>
<td>23,55</td>
</tr>
<tr>
<td>6</td>
<td>10,33</td>
<td>10,73</td>
<td>27,84</td>
<td>23,82</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>10,45</td>
<td>10,93</td>
<td>27,34</td>
<td>23,70</td>
</tr>
</tbody>
</table>

74

5.3.3 Dichtemessung

Die Ergebnisse der Dichtebestimmung der einzelnen Injektionsmittel bei 30 und 40° C werden in Tab. 17 dargestellt. Die Ergebnisse der einzelnen Messungen befinden sich im Anhang.

<table>
<thead>
<tr>
<th>Injektionsmittel</th>
<th>IM 4+</th>
<th>Ultrafin 12</th>
<th>Wasserglas 37/40</th>
<th>Denepox 40</th>
<th>2K-Bitumen</th>
<th>Ultrafin 12 (Salzlösung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dichte bei 30° C</td>
<td>1,846 g/cm³</td>
<td>1,415 g/cm³</td>
<td>1,363 g/cm³</td>
<td>1,062 g/cm³</td>
<td>0,965 g/cm³</td>
<td>1,704 g/cm³</td>
</tr>
<tr>
<td>Dichte bei 40° C</td>
<td>1,840 g/cm³</td>
<td>1,412 g/cm³</td>
<td>1,357 g/cm³</td>
<td>1,054 g/cm³</td>
<td>-</td>
<td>1,696 g/cm³</td>
</tr>
<tr>
<td>Differenz je Grad Celsius</td>
<td>0,0006</td>
<td>0,0006</td>
<td>0,0006</td>
<td>0,0008</td>
<td>-</td>
<td>0,0008</td>
</tr>
</tbody>
</table>

Bei der Dichtebestimmung kam es nur zu geringen Schwankungen der Messwerte um den Mittelwert (Die Ergebnisse Einzelmessungen befinden sich im Anhang). Bei der höheren Temperatur hatten die Injektionsmittel immer eine geringere Dichte. Beim Wasserglas und IM 4+ hatte sich die Dichte um 0,006 g/cm³ verringert, beim Ultrafin 12 um 0,003 g/cm³ und beim Denepox 40 um 0,008 g/cm³. Während des Anmischens des 2K-Bitumens bei 40° C steifte dieses soweit an, dass der Glaskörper nicht mehr in das Injektionsmittel eingetaucht ist und daher eine Dichtemessung nicht möglich war.

5.3.4 Grenzflächenspannung

Die Grenzflächenspannung oder auch Oberflächenspannung ist ein Wert, der angibt, wieviel Arbeit verrichtet werden muss, um die Oberfläche eines Fluides um einen bestimmten Betrag zu vergrößern. Aus der Washburn-Gleichung (Gleichung 6) ergibt sich, dass das Eindringvermögen von Flüssigkeiten in poröse Medien bei höherer Oberflächenspannung besser ist.

$$L^2 = \frac{\gamma D t}{4 \eta}$$ (6)

\(L\) = Eindringtiefe
\(\gamma\) = Oberflächenspannung
D = Porendurchmesser
\(t\) = Zeit
\(\eta\) = Viskosität
Die Ergebnisse der einzelnen Messungen der Oberflächenspannung befinden sich im Anhang. In Abb. 27 werden die gemessenen Oberflächenspannungen der einzelnen Injektionsmittel zusammenfassend dargestellt.

Abb. 27: Zusammenfassung der Oberflächenspannung der untersuchten Injektionsmittel bei 30 und 40° C.

5.3.5 Kontaktwinkel

Eine wichtige Beobachtung während der Messung war die Tatsache, dass Wasserglas bei höheren Temperaturen dazu neigt, frühzeitig eine Haut auszubilden. Diese bleibt unter Umständen als Rüssel

Abb. 28: Häufigkeit der gemessenen Kontaktwinkel von Wasserglas bei 30 und 40° C.

Abb. 29: Häufigkeit der gemessenen Kontaktwinkel von Ultrafin 12 bei 30 und 40° C.
Die Eötvössche Regel (Gleichung 7) besagt, dass die Oberflächenspannung jeder Flüssigkeit eine Funktion der Temperatur darstellt. In der Gleichung von Young (Gleichung 8) wird der Kontaktwinkel einer Flüssigkeit unter Zuhilfenahme der Oberflächenspannung ermittelt. Dies bedeutet, dass eine Temperaturabhängigkeit der Kontaktwinkel der untersuchten Flüssigkeiten zu erwarten ist.

\[\gamma^* V_m^{2/3} = k \left(T_c - T \right) \]

\[\gamma = \text{Oberflächenspannung der Flüssigkeit} \]

\[V_m = \text{Molare Volumen} \]

\[k = \text{Eötvöss Konstante} \ (2,1 \text{ erg/K*mol}^{2/3}) \]

\[T_c = \text{kritische Temperatur der Flüssigkeit} \]

\[\cos \theta = \frac{\sigma_{SG} - \sigma_{LS}}{\sigma_{LG}} \]

\[\theta = \text{Kontaktwinkel zwischen Flüssigkeit und umgebenden Gas} \]

\[\sigma_{SG} = \text{Oberflächenenergie (Zwischen dem ebenen Festkörper und dem umgebenden Gas)} \]

\[\sigma_{LS} = \text{Grenzflächenenergie (Zwischen Festkörper und Flüssigkeitstrofpen)} \]

\[\sigma_{LG} = \text{Oberflächenspannung (Flüssigkeit)} \]

Tab. 18: Mittelwerte und Einzelmesswerte der Kontaktwinkelmessungen.

<table>
<thead>
<tr>
<th>Ultrafin 12</th>
<th>IM 4+</th>
<th>Denepox 40</th>
<th>2K-Bitumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>30° C</td>
<td>40° C</td>
<td>30° C</td>
<td>40° C</td>
</tr>
<tr>
<td>23</td>
<td>28</td>
<td>45</td>
<td>49</td>
</tr>
<tr>
<td>27</td>
<td>32</td>
<td>41</td>
<td>47</td>
</tr>
<tr>
<td>24</td>
<td>34</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>27</td>
<td>32</td>
<td>42</td>
<td>55</td>
</tr>
<tr>
<td>23</td>
<td>36</td>
<td>42</td>
<td>48</td>
</tr>
<tr>
<td>29</td>
<td>35</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>25,4</td>
<td>32,8</td>
<td>43,7</td>
<td>48,5</td>
</tr>
</tbody>
</table>

In Tab. 19 sind die Kontaktwinkel der Einzelmessungen und der Durchschnittswerte aufgeführt. Der Grund für die Vergrößerte Anzahl an Messungen für das Injektionsmaterial Wasserglasses ist auf die schlechte Handhabbarkeit zurückzuführen. Es deutete sich schon zu Beginn der Messungen an, dass größere Streubreiten zu erwarten sind.
Tab. 19: Wasserglas: Kontaktwinkel, Einzelmessungen und Mittelwerte

<table>
<thead>
<tr>
<th>Messung Nr.</th>
<th>Wasserglas 30° C</th>
<th>Wasserglas 40° C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33,4</td>
<td>54,8</td>
</tr>
<tr>
<td>2</td>
<td>32,2</td>
<td>49,1</td>
</tr>
<tr>
<td>3</td>
<td>49,1</td>
<td>46,4</td>
</tr>
<tr>
<td>4</td>
<td>28,0</td>
<td>42,1</td>
</tr>
<tr>
<td>5</td>
<td>26,3</td>
<td>53,1</td>
</tr>
<tr>
<td>6</td>
<td>41,2</td>
<td>40,6</td>
</tr>
<tr>
<td>7</td>
<td>41,7</td>
<td>53,4</td>
</tr>
<tr>
<td>8</td>
<td>42,0</td>
<td>54,3</td>
</tr>
<tr>
<td>9</td>
<td>47,7</td>
<td>37,1</td>
</tr>
<tr>
<td>10</td>
<td>45,7</td>
<td>50,1</td>
</tr>
<tr>
<td>11</td>
<td>51,6</td>
<td>51,4</td>
</tr>
<tr>
<td>12</td>
<td>44,5</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>46,6</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>44,9</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>47,2</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>46,0</td>
<td></td>
</tr>
<tr>
<td>Mittelwert</td>
<td>41,76</td>
<td>48,40</td>
</tr>
</tbody>
</table>

5.4 Theoretische Betrachtungen zum Eindringverhalten der Injektionsmaterialien

Durch ein Zusammenführen dieser beiden Gleichungen erhält man eine Formel, mit Hilfe derer sich die Eindringstrecke einer Flüssigkeit in eine horizontale zylindrische Pore in Abhängigkeit von der Zeit berechnen lässt. Die auf diesem Wege berechneten Werte lassen sich nicht 1:1 in die Realität übertragen, da zur Berechnung Annahmen getroffen werden müssen, jedoch ermöglicht die Berechnung der Eindringstrecke eine Abschätzung über die Eindringfähigkeit der Injektionsmittel in ein poröses Medium. Im Folgenden werden die zur Berechnung getroffenen Annahmen erläutert und es wird der zur Berechnung herangezogene, aus der Young-LaPlace und Hage-Poiseuille Gleichung erstellte Algorithmus erläutert.

Die Young-Laplace Gleichung (Gleichung 9) beschreibt den Zusammenhang zwischen der Oberflächenspannung, dem Druck sowie der Oberflächenkrümmung einer Flüssigkeit. Für beliebig gekrümmte Oberflächen in Röhren, bei denen der Minuskus der benetzenden Flüssigkeit auf der Zylinderwand ungleich 90° ist, beschreibt die folgende Gleichung die Druckdifferenz über die Oberfläche:
\[
\Delta pc = \frac{2y \cdot \cos \theta}{r}
\]

\(\Delta pc\) = Druckdifferenz an der Grenzfläche Flüssigkeit/Gas
\(y\) = Oberflächenspannung
\(\cos \theta\) = Kontaktwinkel
\(r\) = Radius der zylindrischen Pore

Desweiteren wird zur Berechnung der zeitabhängigen Eindringstrecke die Hagen-Poiseuille-Gleichung verwendet, die das Volumen einer homogenen Newton’schen Flüssigkeit pro Zeiteinheit angibt, das unter laminaler stationärer Strömung durch eine Kapillare mit einem definierten Radius und einer bestimmten Länge strömt (Gleichung 10):

\[
V = \frac{\pi r^4 \Delta p}{8 \eta l}
\]

\(V\) = Volumenstrom durch die Kapillare
\(r\) = Radius der Kapillare
\(\Delta p\) = Druckdifferenz zwischen Anfang und Ende der Kapillare
\(\eta\) = Dynamische Viskosität des strömenden Fluids
\(l\) = Länge der Kapillare

Die beiden vorher genannten Gleichungen (Gleichung 9 und Gleichung 10) dienen der Beschreibung des Eindringverhaltens von Flüssigkeiten in Kapillaren, wobei beide Gleichungen unterschiedliche Materialkennwerte enthalten, die einen Einfluss auf das Strömungsverhalten haben. Dies sind bei der Young-Laplace Gleichung die Oberflächenspannung und der Kontaktwinkel und bei der Hagen-Poiseuille Gleichung die Viskosität. Um diese Materialkennwerte direkt miteinander in Beziehung zu setzen, werden beide Gleichungen zusammengeführt. In der Young-Laplace Gleichung wird für \(\Delta pc\) die Druckdifferenz \(\Delta p\) aus der Hagen-Poiseuille Gleichung eingesetzt, wodurch man die Folgende Gleichung erhält:

\[
\frac{8\eta V}{\pi r^4} = \frac{2y \cdot \cos \theta}{r}
\]

(11)

Der Volumenstrom \(V\) kann auch als Produkt der durchströmten Fläche und der durchströmten Länge der Kapillare pro Zeiteinheit \((\pi r^2 * dl/dt)\) ausgedrückt werden. Durch Ersetzen von \(V\) und anschließendes Umstellen erhält man Gleichung 12:

\[
\frac{dl}{dt} = \frac{y \cdot \cos \theta \cdot r}{4 \cdot \eta \cdot l(t)}
\]

(12)

Anschließendes Integrieren über \(l(t)\) ergibt schließlich folgende Gleichung:

\[
l(t) = \sqrt{\frac{r+y \cdot \cos \theta}{2\eta}} \cdot t
\]

(13)

\(l(t)\) gibt die Wegstrecke an, die eine benetzende Flüssigkeit in einer bestimmten Zeit in einer horizontalen Kapillare mit einem bekannten Radius zurücklegen kann. Die zurückgelegte Strecke ist von den rheologischen Eigenschaften des benetzenden Fluids abhängig (Kontaktwinkel, Oberflächenspannung, dynamische Viskosität). Bei der Berechnung erfolgt eine Gewichtung, da der Kontaktwinkel über den \(\cos\) und die Viskosität mit dem Faktor zwei multipliziert wird. Die Strecke \(l(t),\)
die berechnet wird, bietet somit eine sehr realitätsnahe Möglichkeit, das Eindringverhalten der unterschiedlichen Injektionsmittel miteinander zu vergleichen, da alle rheologischen Eigenschaften der Injektionsmaterialien inklusive ihres Einflusses bzw. ihrer Gewichtung berücksichtigt werden.

Tab. 20: Zusammenstellung der für die Berechnung der Eindringtiefe in eine horizontale, zylindrische Kapillare verwendeten rheologischen Materialkennwerte

<table>
<thead>
<tr>
<th>Materialkennwerte</th>
<th>Oberflächenspannung</th>
<th>Viskosität</th>
<th>Kontaktwinkel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeitraum 1</td>
<td>8 Minuten nach Anmischen</td>
<td>0-5 Minuten nach Anmischen</td>
<td>Direkt nach Anmischen</td>
</tr>
<tr>
<td>Zeitraum 2</td>
<td>32 Minuten nach Anmischen</td>
<td>25-30 Minuten nach Anmischen</td>
<td>Direkt nach Anmischen</td>
</tr>
<tr>
<td>Injektionsmittel</td>
<td>Wasserglas 37/40</td>
<td>Ultrafin 12 Im 4+</td>
<td>Denepox 40</td>
</tr>
<tr>
<td>Oberflächenspannung [mN/M] (30°C/40°C)</td>
<td>74,849/74,849</td>
<td>69,030/69,939</td>
<td>62,138/61,061</td>
</tr>
<tr>
<td>Viskosität [mPa/s] (30°C/40°C)</td>
<td>59,0/39,9</td>
<td>66,6/70,5</td>
<td>266,7/219,2</td>
</tr>
<tr>
<td>Kontaktwinkel [Grad] (30°C/40°C)</td>
<td>41,8/48,4</td>
<td>25,4/32,8</td>
<td>43,7/48,5</td>
</tr>
<tr>
<td>Zeitraum 2</td>
<td>Wasserglas 71,349/71,349</td>
<td>Ultrafin 72,657/71,562</td>
<td>Denepox 61,966/61,963</td>
</tr>
<tr>
<td>Oberflächenspannung [mN/M] (30°C/40°C)</td>
<td>59,2/40,7</td>
<td>120,6/118,2</td>
<td>391,7/401,5</td>
</tr>
</tbody>
</table>

Unter Verwendung der in Tab. 20 dargestellten Daten wurde mit dem aus der Young-Laplace Gleichung und der Hagen-Poiseuille Gleichung abgeleiteten Algorithmus die Eindringtiefe der unterschiedlichen Injektionsmittel in eine horizontale zylindrische Kapillare mit einem Durchmesser von 100 µm innerhalb von 60 Sekunden berechnet. Das Ergebnis der Berechnung ist in Abb. 30 dargestellt. Für jedes Injektionsmittel wurde die Eindringtiefe viermal berechnet, wobei zwei verschiedene Temperaturen der Injektionsmittel (30 und 40°C) sowie zwei verschiedene Zeitpunkte bzw. Zeiträume (vgl. Tab. 20) für die Berechnung herangezogen wurden.
Abb. 30: Darstellung der Eindringtiefe der unterschiedlichen Injektionsmittel in den zwei verschiedenen Zeiträumen in eine horizontale Kapillare mit einem Durchmesser von 100 µm.

Im Rahmen der Injektionsversuche soll das Eindringverhalten unterschiedlicher Injektionsmittel in Kontaktfugen zwischen Steinsalz und verschiedenen typischen Baustoffen für Streckenverschlussbauwerke erfolgen. Da hierbei die Betrachtung des Eindringverhaltens in unterschiedlich ausgebildete Kontaktfugen im Vordergrund steht, wird das Ultrafin 12 auch im Kontakt mit dem Sorelbeton eingesetzt. Dies ist bei der Injektion von realen Streckenverschlussbauwerken keine zulässige Materialkombination, da es aufgrund von Ca²⁺ und Mg²⁺ Austauschreaktionen zu
6 Modellversuche zur Erzeugung und Injektion einer Kontaktfuge im Labor

6.1 Gewinnung und Herstellung der Probenkörper

Nach der Entnahme wurden die Kerne bei 20° C im Trockenschrank gelagert und im Spaltzugversuchachsparallel halbiert. Durch das Halbieren der Kerne im Spaltzugversuch wurde versucht, eine Oberfläche entlang der Bruchfläche zu erzeugen, die in Bezug auf die Rauigkeit und Struktur möglichst die Eigenschaften einer per Teilschnittmaschine nachgeschnittenen Strecke repräsentiert.

Für die Injektionsleitung wurde in den auf beiden Stirnseiten verwendeten Spanplatten eine Durchgangsbohrung erstellt, wobei die Injektionsleitung in der unteren Spanplatte mit Silikon befestigt wird.

Während der Betonage des Probenkörpers wurde zuerst eine 2 cm mächtige Schicht Beton in das Rohr gefüllt, auf die der halbierte Salzkern gestellt wurde. Anschließend wurde die Injektionsleitung in die Kerbe des halbierten Salzkerns gedrückt (Abb. 31, Linkes Bild) und die Verschalung mit dem Beton aufgefüllt, wobei auch auf die obere Stirnseite des Salzkerns eine 2 cm mächtige Betonschicht aufgebracht wurde. Somit befinden sich auf beiden Stirnseiten des Probenkörpers 2 cm mächtige

Betonschichten, in denen auf beiden Seiten nach dem Spaltzugversuch die Schraubpacker eingeschraubt wurden. Über die Schraubpacker können die Probenkörper zum Injizieren an die Injektionspumpe angeschlossen werden. Beim Betonieren wurde darauf geachtet, dass die Injektionsleitung über die gesamte Länge des Kerns Kontakt mit dem Salz hat, wodurch verhindert werden sollte, dass die Injektionsleitung bei der Probenherstellung vom Beton umschlossen wird. Somit wurde sichergestellt, dass die entlang des Kontaktbereichs verlaufende Kontaktfuge nach dem Spaltzugversuch injizierbar war. In Abb. 32 ist eine Nahaufnahme der Injektionsleitung im Kontaktbereich Beton/Salz dargestellt die zeigt, dass der Kontaktbereich sehr gut an die Injektionsleitung angebunden ist.

Abb. 32: Anbindung der Injektionsleitung an den Kontaktbereich zwischen Beton und Salzkern

6.2 Laboratives verfahren zur Erzeugung einer Kontaktfuge

Die Herstellung der künstlichen Kontaktfuge erfolgte durch die Schädigung der Proben im Kontaktbereich zwischen Magnesiabinder beziehungsweise Salzbeton und Salz im Spaltzugversuch. Im Spaltzugversuch wird die zylindrische Probe in eine Druckprüfmaschine eingespannt (Abb. 33).
Durch die Ausübung einer Kraft auf die Probe durch die beiden Lasteinleitungsplatten wurden im Zentralteil der Probe Zugspannungen induziert, die wie in Abb. 34 dargestellt zu einem Versagen der Probe senkrecht zu den Lasteintragsplatten führt. Die Probenkörper wurden so in die Apparatur eingebaut, dass der Kontaktbereich zwischen Beton und Salz senkrecht zu den Lasteinleitungsplatten liegt und der sich wie in Abb. 34 dargestellt ausbildende Riss entlang des Kontaktbereichs zwischen Salz und Beton verläuft.

An einer der beiden Stirnseiten der Probe wurde senkrecht zum Kontaktbereich zwischen Salz und Beton ein digitaler Messschieber angebracht, mit dem während des Spaltzugversuchs die Öffnung des Risses an der Stirnseite überwacht werden konnte. Der Spaltzugversuch wurde abgebrochen, sobald auf dem Messschieber eine Öffnungsweite von 150 µm zu erkennen war.

Wie in Abb. 35 zu erkennen ist, tritt das höchste Schwindmaß im Salzbeton M2 während der ersten 40 Tage der Abbindezeit auf. Innerhalb dieser Zeit kommt es auch zu einem deutlichen Anstieg der Haftzugfestigkeit des Kontaktbereichs zwischen dem Salz der Streckenkontur und dem Salzbeton. Durch das Schwinden des Salzbeton kommt es im Kontaktbereich zum Aufbau von Zugspannungen,

Abb. 35: Entwicklung der Haftzugfestigkeit zwischen dem Salzbeton M2 und Steinsalz und dem Schwindmaß des Salzbetons M2 in Abhängigkeit von der Abbindezeit. Die Daten die der Abbildung zugrunde liegen wurden den Planungsunterlagen zur Stilllegung des Endlagers Morsleben entnommen [26; 28].

Im weiteren Verlauf wurden jeweils 8 Probenkörper aus Salzbeton und Magnesiabinder im Spaltzugversuch geschädigt. Während der Spaltzugversuche wurde mittels eines auf der Stirnseite der Probe befestigten Messschiebers die Öffnungsweite des sich bildenden Risses erfasst und sobald 150 µm erreicht waren wurde der Spaltzugversuch abgebrochen. Die Spaltzugversuche wurden bei einer Zunahme des Axialdrucks von 0,005 MPa pro Sekunde durchgeführt.

Abb. 37: Axialdruck gegen Verformung für den bGZ-Salzbeton.

In Abb. 39 lässt sich gut erkennen, dass die Probenkörper aus Magnesiabinder und Salzbeton sehr unterschiedliche Materialverhalten beim Spaltzugversuch aufweisen. Mit ungefähr 0,5 MPa ist der maximale Axialdruck bei den Spaltzugversuchen mit dem Salzbeton M2 deutlich niedriger als beim Magnesiabinder MB10, der Spitzenwerte von fast 2 MPa erreicht. Die Verformung zum Ende des Spaltzugversuchs beträgt beim Magnesiabinder zwischen 0,3 und 0,5 % (der Probenkörper P_1 stellt mit ca. 0,8 % einen Ausreißerwert dar). Beim Salzbeton liegt die maximale Verformung zwischen 0,25 und 0,4 %. Auffällig ist zudem, dass die Arbeitskennlinien bei den mit Salzbeton hergestellten Probenkörpern eine weniger ausgeprägte Streuung aufweisen als die Probenkörper die mit Magnesiabinder hergestellt wurden.

Die Probenkörper, die mit dem Salzbeton M2 hergestellt wurden, wiesen zum Zeitpunkt der Spaltzugversuchs (14 Tage Abbindezeit) eine deutlich geringere Festigkeit auf als die mit Magnesiabinder hergestellten Probenkörper (5 Tage Abbindezeit). Zudem weisen die Salzbeton Probenkörper ein plastischeres Deformationsverhalten bei der Kontaktfugenbildung auf als der Magnesiabinder.

Abb. 39: Axialdruck gegen Verformung für alle durchgeführten Spaltzugversuche (grün bGZ-Salzbeton und rot Magnesiabinder MB10)
6.3 Injektion der Kontaktfuge

Nach der Erzeugung der künstlichen Kontaktfuge im Spaltzugversuch wurden die Probenkörper mit Beton ummantelt, um ein Zerbrechen durch den Injektionsdruck zu verhindern. Hierzu wurden die Probenkörper in ein Kg-Rohr mit einem Innendurchmesser von 225 mm einbetoniert. Um einen Feuchtigkeitseintrag aus dem Beton in den Probenkörper zu unterbinden wurden die Probenkörper vor der Betonage mit dem Epoxidharz Denepox 40 beschichtet.

6.3.1 Durchführung der Injektion

Die im Spaltzugversuch erzeugte künstliche Kontaktfuge wurde über eine im Kontaktbereich zwischen Salz und Beton vor der Betonage verlegte Injektionsleitung injiziert. Hierfür wurde die Injektionsleitung Intec Cem N der Firma Max Frank verwendet, die bereits im Forschungsvorhaben CARLA zur Injektion des Kontaktbereichs eines In-Situ Streckenverschlussbauwerks zum Einsatz kam. Für die Durchführung der Injektion wurden auf beiden Stirnseiten des Probenkörpers Schraubpacker der Firma Desoi jeweils 5 cm weit in die Injektionsleitung eingeschraubt. Auf beiden Schraubpackern wurde nachfolgend ein Anschlussstück für die Injektionspumpe (HP-60ZD) auf die Packer arretiert. Neben dem Anschließen der Injektionspumpe dient das Anschlussstück auch dazu, nach dem Entlüften der Leitung (auf der pumpenabgewandten Seite) sowie nach Ablauf der Injektion (auf der Pumpenseite) die Injektionsleitung abzuschiebern. Durch das Abschiebern wird der Injektionsdruck für die Aushärtphase aufrechterhalten.

Nach dem Entlüften der Injektionsleitungen wurde bei allen Injektionen ein Druck von 5 bar aufgebaut und über einen Zeitraum von 20 Minuten aufrechterhalten. Durch das Abschiebern des Packers nach der Injektion wurde der Injektionsdruck auch für die Aushärtephase aufrechterhalten.

6.3.2 Auswertung

Die Probenkörper wurden vor und nach der Injektion gewogen, wobei die Differenz der beiden Wägungen die Masse des insgesamt injizierten Injektionsmittels repräsentiert. Hiervon wird zunächst das in der Injektionsleitung sowie im Packer verbleibende Injektionsmittel abgezogen. Anschließend wird mit Hilfe der Dichte der Injektionsmaterialien das in den Probenkörper injizierte Volumen berechnet. Da die Probenkörper unterschiedliche Längen aufweisen werden die injizierten Mengen zur besseren Vergleichbarkeit in cm³ Injektionsmittel pro cm Länge des Salzkorns angegeben. In Abb. 40 sind die pro cm Leitungslänge injizierten Volumina der unterschiedlichen Injektionsmittel (Wasserglas 37/40 und Ultrafin 12) und Baustoffkombinationen (Magnesiabinder MB10 und bGZ-Salzbeton) dargestellt. Für jede Kombination aus den Injektionsmitteln wurde eine separate Signatur verwendet.

In Abb. 40 ist zu erkennen, dass die Länge des Probenkörpers (bzw. des zur Herstellung des Probenkörpers verwendeten Steinsalzbohrkerns) keinen Einfluss auf das injizierte Volumen hat. Vielmehr hat die Kombination aus Injektionsmittel und Baustoff des Probenkörpers einen Einfluss auf das injizierte Volumen. Im Durchschnitt wurde in alle Probenkörper 4,23 cm³ pro cm Leitungslänge injiziert. In Tab. 21 sind die Mittelwerte der 4 verschiedenen injizierten Materialkombinationen aus Injektionsmittel und Baustoff des Streckenverschlussbauwerks zusammengestellt. Hierbei ist ersichtlich, dass mehr Ultrafin 12 als Wasserglas in die Probenkörper injiziert werden konnte und sich die mit dem bGZ-Salzbeton hergestellten Probenkörper besser als die mit dem Magnesiabinder hergestellten injizieren ließen. Zudem ist erkennbar, dass es deutliche Unterschiede zwischen den verschiedenen Materialkombinationen hinsichtlich des Eindringverhaltens der Injektionsmittel gibt. Dies zeigt sich insbesondere bei den mit dem bGZ-Salzbeton hergestellten Probenkörpern, da im Schnitt nur 3,41 cm³ Wasserglas und 5,35 cm³ Ultrafin 12 injiziert werden konnten. Um mehr Informationen hinsichtlich des Ausbreitverhaltens der Injektionsmittel in den Probenkörpern zu erhalten, wurden diese nach einer Aushärtephase der Injektionsmittel von mehreren Wochen zersägt und optisch bewertet.
6.4 Analyse des Injektionserfolgs

Neben der Auswertung der in die jeweiligen Probenkörper injizierten Menge an Injektionsmittel wurden die Probenkörper nach einer Aushärtephase aufgesägt, um das Ausbreitverhalten des Injektionsmittels im Probenkörper betrachten zu können. Bei den mit Ultrafin 12 injizierten Probenkörpern betrug die Aushärtephase etwa einen Monat und bei den mit Wasserglas injizierten Proben wurde eine Aushärtephase von 3 Monaten eingehalten. Um die Schädigung der Probenkörper beim Spaltzugversuch als auch das Ausbreitverhalten des Injektionsmittels im geschädigten Bereich für die unterschiedlichen Kombinationen aus Injektionsmittel und dem Baustoff des Streckenverschlussbauwerks vergleichen zu können, wurde ein tabellarisches Auswerteverfahren erarbeitet, das es ermöglicht, die optischen Befunde bei der Betrachtung der einzelnen Schnitte durch die Probenkörper in Zahlen zu transferieren und somit einen Vergleich zu ermöglichen. Im Folgenden wird zuerst das Auswerteverfahren vorgestellt bevor auf die Ergebnisse der Auswertung eingegangen wird.

6.4.1 Verfahren zur Bewertung des Injektionserfolgs

Jeder Probenkörper wurde an drei verschiedenen Stellen zersägt, wobei alle drei Schnitte parallel zu den Stirnseiten der Probenkörper angeordnet sind (Abb. 41). Die Schraubpacker reichen von der Stirnseite 5 cm weit in den Probenkörper hinein. Daher wurden die Schnitte 1 und 3 in einer Entfernung von 7 cm zur Stirnseite angelegt um sicherzustellen, dass sich diese in einem Bereich befinden, wo das Injektionsmittel aus der Injektionsleitung in den Probenkörper austreten kann. Der Schnitt 2 wurde in der Mitte des Probenkörpers angeordnet.

Schnitt

<table>
<thead>
<tr>
<th>Probenkörper</th>
<th>Schnitt</th>
<th>Lokalität der Schädigung</th>
<th>Injektionsmittel im geschädigten Bereich</th>
<th>Injektion des Salzes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Kein Riss</td>
<td>Riss entlang des Kontaktbereichs</td>
<td>Entfernung < 1 cm zum Kontaktbereich</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>S1_Links_I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S1_Links_A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S1_Rechts_I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S1_Rechts_A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S2_Links_I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S2_Links_A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S2_Rechts_I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S2_Rechts_A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S3_Links_I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S3_Links_A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S3_Rechts_I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S3_Rechts_A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lokalität der Schädigung

Injektionsmittel im geschädigten Bereich:

Anschließend an die Beschreibung der Lage der geschädigten Bereiche wurden diese hinsichtlich vorhandenen Injektionsmittels untersucht. Um eine Auswertung wie in Tab. 22 zu ermöglichen wurden die Mengen an Injektionsmittel die im geschädigten Bereich zu erkennen sind in vier verschiedene Kategorien unterteilt. Diese sind zusammenfassend in Abb. 43 dargestellt.

Injektion des Salzes:

6.4.2 Optische und messtechnische Analyse des Injektionsergebnisses

Die einzelnen Schnitte durch die Probenkörper wurden tabellarisch ausgewertet, wobei sowohl die Schädigung der Probenkörper als auch die Ausbreitung des Injektionsmittels betrachtet wurde. Die einzelnen Tabellen sind im Anhang getrennt nach den vier verschiedenen Materialkombinationen

Lokalität der Schädigung:

Die Darstellung der Ergebnisse erfolgt in Analogie zur Auswertung der Einzelproben in Tab. 22 beginnend mit Kategorie „Lokalität der Schädigung“ der Probenkörper im Spaltzugversuch. In Abb. 45 ist die Lokalität der Schädigung der Proben für die vier verschiedenen Materialkombinationen dargestellt.

Injektionsmittel im geschädigten Bereich:

Für die Auswertung des im geschädigten Bereich vorkommenden Injektionsmittels wurden nur Schnitte herangezogen, bei denen eine Schädigung durch den Spaltzugversuch erkennbar war. Die Menge an Injektionsmittel die im geschädigten Bereich erkennbar ist sowie die Anzahl der Proben die zur Auswertung hinzugezogen wurden sind in Abb. 46 dargestellt. Die Bewertung des im Kontaktbereich vorhandenen Injektionsmaterials erfolgte in vier Kategorien. Je höher die Kategorie, desto größer war die im Kontaktbereich zu erkennende Menge an Injektionsmaterial. Das bedeutet, je häufiger die höheren Kategorien in den Kreisdigrammen vertreten sind, desto besser ist das Injektionsmaterial in den Kontaktbereich eingedrungen.

Mit Ausnahme der mit Wasserglas injizierten bGZ-Salzbeton Probenkörper wurde für die anderen 3 Materialkombinationen eine große Probenanzahl für die Auswertung herangezogen, weswegen nur diese als repräsentativ erachtet werden. Auffällig ist, dass bei den Magnesiabinderprobenköpfen geschädigte Bereiche ohne Injektionsmittel häufiger vorkommen als beim Salzbeton. Bei den 3 Materialkombinationen ist die Kategorie 4, (kontinuierlich und deutlich sichtbar injizierte geschädigte Bereiche) insgesamt am seltensten vertreten. Am häufigsten kommt diese Kategorie jedoch bei den mit Ultrafin 12 injizierten Salzbetonprobenköpfen mit 8 % vor. Die Kategorie 3 (deutlich sichtbar injizierte geschädigte Bereiche) ist mit 33 % bei der Kombination Salzbeton und Ultrafin 12 am häufigsten vertreten und bei der Materialkombination aus Magnesiabinder MB10 und Ultrafin 12 (8 %) am seltensten. Die Materialkombinationen aus Salzbeton und Ultrafin 12 sowie Magnesiabinder und Wasserglas weisen mit 49 bzw. 50 % eine ähnliche Häufigkeit der Kategorie 2 (geschädigter Bereich mit sehr geringen Öffnungsweiten) auf und bei der Kombination aus Magnesiabinder und Ultrafin 12 kommt diese etwas häufiger vor.

Injektion des Salzes:
In dieser Kategorie wurde bewertet, wieviel Injektionsmaterial in das Salz injiziert werden konnte. Dies erfolgte über die Betrachtung der im Salz injizierten Fläche. Je größer die Fläche des injizierten Bereichs im Salz ist, desto besser konnte das Injektionsmaterial in diesen Bereich eindringen. Somit sind die Injektionsmaterialien hinsichtlich Ihres Eindringverhaltens besser zu bewerten, die größere Bereiche innerhalb des Salzes injiziert haben.

Bei den beiden mit dem bGZ-Salzbeton hergestellten Probenkörpern gibt es deutliche Unterschiede hinsichtlich der Menge des in das Salz injizierten Injektionsmittels. In der Hälfte der betrachteten
Schnitte des mit dem Wasserglas injizierten bGZ-Probenkörpers war kein Injektionsmittel feststellbar und der Anteil der Schnitte in denen mehr als die Hälfte der Salzfläche injiziert war betrug unter 20 %. Auch die beiden Gruppen der mit dem Magnesiabinder hergestellten Probenkörper unterscheiden sich hinsichtlich des in das Salz injizierten Injektionsmittels in allen 4 Kategorien. Wenn die injizierten Probenkörper hinsichtlich des eingesetzten Injektionsmittels betrachtet werden fällt auf, dass bei den mit Ultrafin 12 injizierten Probenkörperrn sowohl bei den Salzbeton als auch bei dem aus Magnesiabinder hergestellten Probenkörpern die exakt gleiche prozentuale Verteilung der injizierten Bereiche im Steinsalz auftrat. Die beiden Gruppen der mit Wasserglas injizierten Probenkörper hingegen unterscheiden sich voneinander. Die Anteile an Schnitten in denen mehr als 1/6 der Fläche injiziert wurde sind ungefähr gleich häufig vertreten. Aber bei den Salzbeton Probenkörpern war in etwa der Hälfte der Schnitte kein Injektionsmittel im Salz feststellbar und beim MB10 waren dies nur in etwa 18 % der Schnitte der Fall.
7 Interpretation der Ergebnisse

Um die Ergebnisse der optischen Auswertung mit den in die einzelnen Probenkörper injizierten Volumina pro cm Probenlänge zu verknüpfen, wurde Abb. 48 erstellt. Im Rahmen der optischen Auswertung des Eindringverhaltens der unterschiedlichen Injektionsmaterialien wurde sowohl für die Auswertung des in den geschädigten Bereich als auch in das Salz injizierten Menge an Injektionsmittel eine Unterteilung in 4 Kategorien unternommen. Diese erhielten für die Erstellung dieser Abbildung die Zahlenwerte eins bis vier, wobei die niedrigste Zahlenwert jeweils der Kategorie mit der geringsten injizierten Menge und der höchste Zahlenwert der Kategorie mit der höchsten injizierten Menge zugeordnet wurde. Anschließend wurden für jeden Probenkörper die Zahlenwerte aus den einzelnen betrachteten Abschnitten aufsummiert und gemittelt. Diese gemittelten Zahlenwerte werden in Abb. 48 auf der X-Achse abgetragen. Je höher der summierte Zahlenwert ist, desto mehr Injektionsmittel wurde in den geschädigten Bereich bzw. das Salz injiziert. Auf der y-Achse wurde abgetragen, wieviel Injektionsmaterial pro cm des Probenkörpers sowohl im Bereich des Kontaktbereichs als auch in das Salz injiziert werden konnte. Je besser sich das Injektionsmaterial injizieren ließ, desto höher sind die Bewertung auf der X-Achse als auch auf der y-Achse.

In Abb. 48 ist zu erkennen, dass im linken unteren Bereich des Diagramms die mit Wasserglas injizierten Salzbeton Probenkörper liegen und dass oben rechts die mit Ultrafin 12 injizierten Salzbetonkörper lokalisiert. Im Bereich dazwischen befinden sich die mit Wasserglas und Ultrafin 12 injizierten Magnesiabinder Probenkörper. Zudem ist der Trend zu erkennen, dass je höher der erzielte Zahlenwert der Probe auf der X-Achse ist, desto mehr Injektionsmittel injiziert werden konnte. Das bedeutet, dass bei den Proben, bei denen ein hohes Volumen pro cm Länge des Salzkerns injiziert werden konnte, das Injektionsmittel sowohl in das Salz als auch in den geschädigten Bereich eingedrungen ist. Jedoch gibt es auch Probenkörper für die diese allgemeine Aussage nicht zutrifft und
in einen der beiden Bereiche deutlich mehr Injektionsmittel eingedrungen ist als in den anderen. Dies trifft für die beiden mit Wasserglas injizierten Salzbetonproben rechts unten in der Abb. 48 zu, bei denen das Salz wesentlich ausgeprägter injiziert wurde als der Kontaktbereich. Ebenso gilt dies für die Oben links liegenden mit Ultrafin 12 injizierten Salzbetonprobenkörper, bei denen wiederum der geschädigte Bereich deutlich intensiver injiziert wurde als das Salz.

![Graphik zu Abb. 48](image_url)

Abb. 48: Darstellung des in den geschädigten Bereich und das Steinsalz injizierten Injektionsmittels für die unterschiedlichen Materialkombinationen in Abhängigkeit des in den jeweiligen Probenkörper injizierten Volumens.

Bei den Injektionsversuchen zeigte sich sowohl bei der Betrachtung des injizierten Volumens als auch bei der optischen Auswertung der Verteilung des Injektionsmittels in den Probenkörpern, dass sich die Materialkombinationen aus Injektionsmittel und Baustoff des Streckenverschlussbauwerks hinsichtlich der Mengen, die injiziert werden konnten, unterscheiden. Die optische Auswertung stimmte hierbei mit den Ergebnissen des injizierten Volumens überein.

8 Zusammenfassung und Ausblick

Im Unterschied zu Abdichtinjektionen im Tunnelbau, Spezialtiefbau oder Bergbau ist die Kontaktfugeninjektion für Streckenverschlussbauwerke aus Salz- oder Sorelbeton im Salzgebirge eine außergewöhnliche Aufgabenstellung. Dies liegt zum einen an den Rahmenbedingungen die sich aus dem Einsatz in einem HAW Endlager ergeben sowie zum anderen an der für Injektionsarbeiten ungewöhnlichen Gesteinsformation Salz. Bedingt durch diese beiden Einflussfaktoren steht nur eine geringe Anzahl an grundsätzlich einsetzbaren Injektionsmaterialien zur Abdichtung von Streckenverschlussbauwerken im Salinar zur Verfügung, über die zudem ein vergleichsweise geringer Kenntnisstand vorliegt.

Bereich der Kontaktfugen anzutreffenden Materialien, als auch das Erhärtungsverhalten und dessen Einfluss auf die Abdichtung der Kontaktfuge.

Um den Kenntnisstand über die ausgewählten Injektionsmaterialien hinsichtlich des Eindringverhaltens in Wegsamkeiten mit geringen Öffnungsweiten zu erweitern, wurden im Rahmen dieser Arbeit zum einen rheologische Kennwerte zur Charakterisierung des Fließverhaltens der Injektionsmaterialien ermittelt und zum anderen Versuchen zur Injektion einer künstlich erzeugten Kontaktfuge im Labormaßstab durchgeführt.

Die Auswertung der durchgeführten Injektionsversuche zeigte, dass neben dem im Spaltzugversuch geschädigten Bereich vielfach auch das Steinsalz entlang von Rissen oder aufgelockerten Bereichen injiziert werden konnte. In die mit dem bgZ-Salzbeton erstellten Probenkörper ließ sich deutlich mehr Ultrafin 12 (57 %) als Wasserglas injizieren und bei den Sorelbetonprobenkörperrn geringfügig mehr Wasserglas (5 %). Insgesamt konnte in die mit dem bgZ-Salzbeton hergestellten Probenkörper 13 % mehr Injektionsmaterial injiziert werden als in die Sorelbetonprobenkörper und in alle Probenkörper wurde 21 % mehr Ultrafin 12 als Wasserglas injiziert.

Dies stellt ein überraschendes Ergebnis dar, da aufgrund der rheologischen Eigenschaften das Wasserglas 37/40 besser in vorhandene Wegsamkeiten eindringen sollte als das partikelgestützte

Dessen ungeachtet resultieren aus den Versuchen noch unbeantwortete Aufgabe- und Fragestellungen, deren Beantwortung den Kenntnisstand über Injektionsmaterialien zur Kontaktfugeninjektion verbessert und somit zum Erreichen einer niedrigen integralen Permeabilität bei Streckenverschlussbauwerken beiträgt:

- Entscheidend für das Eindringverhalten von partikelgestützten Injektionsmaterialien ist die Partikelgrößenverteilung in der Suspension. Diese wird maßgeblich durch den verwendeten Mischprozess sowie die Mischzeiten beeinflusst. Daher ist es wichtig, die eingesetzte Mischtechnik sowie die Mischzeiten auf die eingesetzten Injektionsmaterialien abzustimmen, um Agglomerationen in der Suspension zu vermeiden und möglichst geringe Partikelgrößen in der Suspension zu erreichen.
- Um den Einsatz von Natronwasserglas im Kontakt mit leichtlöslichen Kalisalzen zu ermöglichen ist experimentell zu klären, ob es infolge des Wassergehaltes des Natronwasserglases zu signifikanten Anlöseprozessen und der Ausbildung von Wegsamkeiten kommt.
- Aufgrund des unterschiedlichen Verhaltens von Natronwasserglas im Kontakt mit verschiedenen Salzmineralen sind detailliertere Kenntnisse zum Erhärtungsverhalten und zeitaabhängigen Haftzugfestigkeiten zu ermitteln.
- Zur Durchführung einer detaillierten Bewertung des Einflusses des Injektionsregimes, das heißt der Kombination aus Injektionsrate und Injektionsdruck für unterschiedliche Injektionsmaterialien auf den Abdichterfolg.

Darüber hinaus sind für die Abdichtung der Kontaktfuge und insbesondere für die Auswahl geeigneter Injektionsmaterialien Informationen über die zu erwartenden Porenweiten bzw. Porenweitenverteilungen im Kontaktbereich zwischen Streckenverschlussbauwerk und Salzgebirge wichtig. Mit diesen Informationen wird eine präzisere Abstimmung der einzusetzenden Injektionsmittel auf die zu erwartenden Bedingungen ermöglicht.

Injektionsversuchen konnten sowohl mit dem untersuchten Feinstzement Ultrafin 12 als auch mit Natronwasserglas der Grädigkeit 37/40 erfolgreich Kontaktfugen in unter Laborbedingungen hergestellten Probenkörpern injiziert werden.
Literatur

[61] [Auszug aus DIN EN 12715 Injektionen, (2000)].

[63] **HeidelbergCement AG: Prüfzeugnis. Ultrafin 12 - Laboruntersuchungen zur Rheologie bei diversen Suspensionsdichten. 22.07.2010.**

[69] [http://www.chemgapedia.de/vsengine/glossary/de/platte_00045platte_00045viskosimeter.glos. html, Aufgerufen am: 05.01.2016].

[70] [http://www.chemgapedia.de/vsengine/glossary/de/platte_00045platte_00045viskosimeter.glos. html, Aufgerufen am: 05.01.2016].

[71] [http://www.chemgapedia.de/vsengine/glossary/de/platte_00045platte_00045viskosimeter.glos. html, Aufgerufen am: 05.01.2016].

[72] [http://www.chemgapedia.de/vsengine/glossary/de/platte_00045platte_00045viskosimeter.glos. html, Aufgerufen am: 05.01.2016].

[73] [http://www.chemgapedia.de/vsengine/glossary/de/platte_00045platte_00045viskosimeter.glos. html, Aufgerufen am: 05.01.2016].

[75] [http://www.chemgapedia.de/vsengine/glossary/de/platte_00045platte_00045viskosimeter.glos. html, Aufgerufen am: 05.01.2016].

[76] [http://www.chemgapedia.de/vsengine/glossary/de/platte_00045platte_00045viskosimeter.glos. html, Aufgerufen am: 05.01.2016].

[77] [http://www.chemgapedia.de/vsengine/glossary/de/platte_00045platte_00045viskosimeter.glos. html, Aufgerufen am: 05.01.2016].

[86] HeidelbergZement Ag: Technisches Merkblatt ULTRAFIN 12.

Anhangsverzeichnis:

Anhang 1: Ergebnisse der Oberflächenspannungsmessung von IM 4+ bei 30° C. Als gestrichelte Linien sind die Verläufe der einzelnen Messungen dargestellt. ... 122

Anhang 2: Tabellarische Übersicht über die Mittelwerte der Oberflächenspannungsmessung von IM 4+ bei 30° C inklusive der Fehler auf die Oberflächenspannung- und die Temperaturmesswerte. 122

Anhang 3: Ergebnisse der Oberflächenspannungsmessung von IM 4+ bei 40° C. Als gestrichelte Linien sind die Verläufe der einzelnen Messungen dargestellt. ... 123

Anhang 4: Tabellarische Übersicht über die Mittelwerte der Oberflächenspannungsmessung von IM 4+ bei 40° C inklusive der Fehler auf die Oberflächenspannung- und die Temperaturmesswerte. ... 123

Anhang 5: Ergebnisse der Oberflächenspannungsmessung von Ultrafin 12 bei 30° C. Als gestrichelte Linien sind die Verläufe der einzelnen Messungen dargestellt. ... 124

Anhang 6: Tabellarische Übersicht über die Mittelwerte der Oberflächenspannungsmessung von Ultrafin 12 bei 30° C inklusive der Fehler auf die Oberflächenspannung- und die Temperaturmesswerte... 124

Anhang 7: Ergebnisse der Oberflächenspannungsmessung von Ultrafin 12 bei 40° C. Als gestrichelte Linien sind die Verläufe der einzelnen Messungen dargestellt. ... 125

Anhang 8: Tabellarische Übersicht über die Mittelwerte der Oberflächenspannungsmessung von Ultrafin 12 bei 40° C inklusive der Fehler auf die Oberflächenspannung- und die Temperaturmesswerte... 125

Anhang 9: Ergebnisse der Oberflächenspannungsmessung von Wasserglas bei 30° C. ... 126

Anhang 10: Tabellarische Übersicht über die Mittelwerte der Oberflächenspannungsmessung von Wasserglas bei 30° C inklusive der Fehler auf die Oberflächenspannung- und die Temperaturmesswerte... 126

Anhang 11: Ergebnisse der Oberflächenspannungsmessung von Wasserglas bei 40° C. ... 127

Anhang 12: Tabellarische Übersicht über die Mittelwerte der Oberflächenspannungsmessung von Wasserglas bei 40° C inklusive der Fehler auf die Oberflächenspannung- und die Temperaturmesswerte... 127

Anhang 13: Ergebnisse der Oberflächenspannungsmessung von Denepox 40 bei 30° C. Als gestrichelte Linien sind die Verläufe der einzelnen Messungen dargestellt. ... 128

Anhang 14: Tabellarische Übersicht über die Mittelwerte der Oberflächenspannungsmessung von Denepox 40 bei 30° C inklusive der Fehler auf die Oberflächenspannung- und die Temperaturmesswerte... 128

Anhang 15: Ergebnisse der Oberflächenspannungsmessung von Denepox 40 bei 40° C. Als gestrichelte Linien sind die Verläufe der einzelnen Messungen dargestellt. ... 129

Anhang 16: Tabellarische Übersicht über die Mittelwerte der Oberflächenspannungsmessung von Denepox 40 bei 40° C inklusive der Fehler auf die Oberflächenspannung- und die Temperaturmesswerte... 129
Anhang 17: Ergebnisse der Oberflächenspannungsmessung des 2K-Bitumens bei 30° C. Als gestrichelte Linien sind die Verläufe der einzelnen Messungen dargestellt.

Anhang 18: Tabellarische Übersicht über die Mittelwerte der Oberflächenspannungsmessung des 2K-Bitumens bei 30° C inklusive der Fehler auf die Oberflächenspannung- und die Temperaturmesswerte.

Anhang 19: Messwerte und Mittelwert der Dichtemessung von Ultrafin 12 bei 30 °C.

Anhang 20: Messwerte und Mittelwert der Dichtemessung von Ultrafin 12 bei 40 °C.

Anhang 21: Messwerte und Mittelwert der Dichtemessung von Ultrafin 12 mit 90% NaCl-gesättigter Lösung bei 30 °C.

Anhang 22: Messwerte und Mittelwert der Dichtemessung von Ultrafin 12 mit 90% NaCl-gesättigter Lösung bei 40 °C.

Anhang 23: Messwerte und Mittelwert der Dichtemessung von IM 4+ bei 30 °C.

Anhang 24: Messwerte und Mittelwert der Dichtemessung von IM 4+ bei 40 °C.

Anhang 25: Messwerte und Mittelwert der Dichtemessung von Wasserglas 37/40 bei 30 °C.

Anhang 26: Messwerte und Mittelwert der Dichtemessung von Wasserglas 37/40 bei 40 °C.

Anhang 27: Messwerte und Mittelwert der Dichtemessung von IM 4+ bei 30 °C.

Anhang 28: Messwerte und Mittelwert der Dichtemessung von IM 4+ bei 40 °C.

Anhang 29: Messwerte und Mittelwert der Dichtemessung von Ultrafin 12 bei 30 °C.

Anhang 30: Kurvenverläufe der Viskositätsmessung von IM 4+ bei 30° C.

Anhang 31: Kurvenverläufe der Viskositätsmessung von IM 4+ bei 40° C.

Anhang 32: Kurvenverläufe der Viskositätsmessung von Ultrafin 12 bei 30° C.

Anhang 33: Kurvenverläufe der Viskositätsmessung von Ultrafin 12 bei 40° C.

Anhang 34: Kurvenverläufe der Viskositätsmessung der mit 90% NaCl gesättigter Lösung angemischter Ultrafin 12 Suspension bei 30° C.

Anhang 35: Kurvenverläufe der Viskositätsmessung der mit 90% NaCl gesättigter Lösung angemischter Ultrafin 12 Suspension bei 40° C.

Anhang 36: Kurvenverläufe der Viskositätsmessung des 2K-Bitumens bei 30° C.

Anhang 37: Kurvenverläufe der Viskositätsmessung von Wasserglas bei 30° C.

Anhang 38: Kurvenverläufe der Viskositätsmessung von Wasserglas bei 40° C.

Anhang 39: Kurvenverläufe der Viskositätsmessung von Denepox 40 bei 30° C.

Anhang 40: Kurvenverläufe der Viskositätsmessung von Denepox 40 bei 40° C.

Anhang 41: Häufigkeitsverteilung der Kontaktwinkelmessungen mit dem Injektionsharz Denepox 40 bei 30° und 40° C.

Anhang 42: Häufigkeitsverteilung der Kontaktwinkelmessungen mit dem Feinstmagnesiabinder IM 4+ bei 30° und 40° C.
Anhang 43: Häufigkeitsverteilung der Kontaktwinkelmessungen mit dem 2K-Bitumen bei 30° und 40° C...

Anhang 44: Tabellarische Auswertung der mit Wasserglas injizierten bGZ-Salzbeton Probenkörper (Nr. 9, 10, 12 und 16) .. 144

Anhang 45: Tabellarische Auswertung der mit Ultrafin 12 injizierten bGZ-Salzbeton Probenkörper (Nr. 2, 7, 14 und 17) ... 147

Anhang 46: Tabellarische Auswertung der mit Wasserglas injizierten Magnesiabinder MB10 Probenkörper (Nr. 1, 4, 13 und 18) .. 150

Anhang 47: Tabellarische Auswertung der mit Ultrafin 12 injizierten Magnesiabinder MB10 Probenkörper (Nr. 3, 8, 11 und 19) .. 153
Anhang 1: Ergebnisse der Oberflächenspannungsmessung von IM 4+ bei 30° C. Als gestrichelte Linien sind die Verläufe der einzelnen Messungen dargestellt.

<table>
<thead>
<tr>
<th>Zeitpunkt</th>
<th>Oberflächenspannung (Mittelwert)</th>
<th>Abweichung</th>
<th>Temperatur</th>
<th>Abweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>62,138 ± 0,019</td>
<td></td>
<td>30,19 ° C</td>
<td>± 0,02</td>
</tr>
<tr>
<td>16</td>
<td>61,690 ± 0,019</td>
<td></td>
<td>30,23 ° C</td>
<td>± 0,02</td>
</tr>
<tr>
<td>24</td>
<td>61,686 ± 0,019</td>
<td></td>
<td>30,14 ° C</td>
<td>± 0,02</td>
</tr>
<tr>
<td>32</td>
<td>61,966 ± 0,019</td>
<td></td>
<td>30,09 ° C</td>
<td>± 0,02</td>
</tr>
</tbody>
</table>

Anhang 2: Tabellarische Übersicht über die Mittelwerte der Oberflächenspannungsmessung von IM 4+ bei 30° C inklusive der Fehler auf die Oberflächenspannung- und die Temperaturmesswerte.
Anhang 3: Ergebnisse der Oberflächenspannungsmessung von IM 4+ bei 40° C. Als gestrichelte Linien sind die Verläufe der einzelnen Messungen dargestellt.

<table>
<thead>
<tr>
<th>Zeitpunkt</th>
<th>Oberflächenspannung (Mittelwert)</th>
<th>Abweichung</th>
<th>Temperatur</th>
<th>Abweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>61,061</td>
<td>± 0,019</td>
<td>40,13 ° C</td>
<td>± 0,02</td>
</tr>
<tr>
<td>16</td>
<td>61,037</td>
<td>± 0,021</td>
<td>40,12 ° C</td>
<td>± 0,02</td>
</tr>
<tr>
<td>24</td>
<td>61,221</td>
<td>± 0,019</td>
<td>40,15 ° C</td>
<td>± 0,02</td>
</tr>
<tr>
<td>32</td>
<td>61,963</td>
<td>± 0,019</td>
<td>40,08 ° C</td>
<td>± 0,02</td>
</tr>
</tbody>
</table>

Anhang 4: Tabellarische Übersicht über die Mittelwerte der Oberflächenspannungsmessung von IM 4+ bei 40° C inklusive der Fehler auf die Oberflächenspannung- und die Temperaturmesswerte.
Anhang 5: Ergebnisse der Oberflächenspannungsmessung von Ultrafin 12 bei 30° C. Als gestrichelte Linien sind die Verläufe der einzelnen Messungen dargestellt.

<table>
<thead>
<tr>
<th>Zeitpunkt</th>
<th>Oberflächenspannung (Mittelwert)</th>
<th>Abweichung</th>
<th>Temperatur</th>
<th>Abweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>69,030 ± 0,019</td>
<td>30,18 ° C</td>
<td>± 0,02</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>71,934 ± 0,019</td>
<td>30,09 ° C</td>
<td>± 0,02</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>72,609 ± 0,019</td>
<td>30,15 ° C</td>
<td>± 0,02</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>72,657 ± 0,019</td>
<td>30,18 ° C</td>
<td>± 0,02</td>
<td></td>
</tr>
</tbody>
</table>

Anhang 6: Tabellarische Übersicht über die Mittelwerte der Oberflächenspannungsmessung von Ultrafin 12 bei 30° C inklusive der Fehler auf die Oberflächenspannung- und die Temperaturmesswerte.
Anhang 7: Ergebnisse der Oberflächenspannungsmessung von Ultrafin 12 bei 40° C. Als gestrichelte Linien sind die Verläufe der einzelnen Messungen dargestellt.

<table>
<thead>
<tr>
<th>Zeitpunkt</th>
<th>Oberflächen- spannung (Mittelwert)</th>
<th>Abweichung</th>
<th>Temperatur</th>
<th>Abweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>69,939</td>
<td>± 0,019</td>
<td>39,79 ° C</td>
<td>± 0,02</td>
</tr>
<tr>
<td>16</td>
<td>70,991</td>
<td>± 0,019</td>
<td>40,05 ° C</td>
<td>± 0,02</td>
</tr>
<tr>
<td>24</td>
<td>71,136</td>
<td>± 0,019</td>
<td>40,05 ° C</td>
<td>± 0,02</td>
</tr>
<tr>
<td>32</td>
<td>71,562</td>
<td>± 0,019</td>
<td>40,09 ° C</td>
<td>± 0,02</td>
</tr>
</tbody>
</table>

Anhang 8: Tabellarische Übersicht über die Mittelwerte der Oberflächenspannungsmessung von Ultrafin 12 bei 40° C inklusive der Fehler auf die Oberflächenspannung- und die Temperaturmesswerte.
Anhang 9: Ergebnisse der Oberflächenspannungsmessung von Wasserglas bei 30° C.

<table>
<thead>
<tr>
<th>Messung Nr.</th>
<th>Oberflächenspannung [mN/M]</th>
<th>Abweichung</th>
<th>Temperatur</th>
<th>Abweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>74,420</td>
<td>± 0,016</td>
<td>29,87</td>
<td>± 0,03</td>
</tr>
<tr>
<td>2</td>
<td>74,930</td>
<td>± 0,014</td>
<td>30,09</td>
<td>± 0,02</td>
</tr>
<tr>
<td>3</td>
<td>74,421</td>
<td>± 0,017</td>
<td>30,01</td>
<td>± 0,03</td>
</tr>
<tr>
<td>4</td>
<td>74,965</td>
<td>± 0,018</td>
<td>30,11</td>
<td>± 0,01</td>
</tr>
<tr>
<td>5</td>
<td>74,906</td>
<td>± 0,017</td>
<td>30,09</td>
<td>± 0,01</td>
</tr>
<tr>
<td>6</td>
<td>75,454</td>
<td>± 0,019</td>
<td>30,10</td>
<td>± 0,02</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>74,849</td>
<td>± 0,017</td>
<td>30,05</td>
<td>± 0,02</td>
</tr>
</tbody>
</table>

Anhang 10: Tabellarische Übersicht über die Mittelwerte der Oberflächenspannungsmessung von Wasserglas bei 30° C inklusive der Fehler auf die Oberflächenspannung- und die Temperaturmesswerte.
Anhang 11: Ergebnisse der Oberflächenspannungsmessung von Wasserglas bei 40° C.

<table>
<thead>
<tr>
<th>Messung Nr.</th>
<th>Oberflächenspannung [mN/M]</th>
<th>Abweichung</th>
<th>Temperatur</th>
<th>Abweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>71,649</td>
<td>± 0,019</td>
<td>40,17</td>
<td>± 0,02</td>
</tr>
<tr>
<td>2</td>
<td>70,247</td>
<td>± 0,019</td>
<td>39,40</td>
<td>± 0,03</td>
</tr>
<tr>
<td>3</td>
<td>73,012</td>
<td>± 0,020</td>
<td>39,91</td>
<td>± 0,01</td>
</tr>
<tr>
<td>4</td>
<td>69,645</td>
<td>± 0,018</td>
<td>40,49</td>
<td>± 0,02</td>
</tr>
<tr>
<td>5</td>
<td>72,741</td>
<td>± 0,018</td>
<td>40,66</td>
<td>± 0,03</td>
</tr>
<tr>
<td>6</td>
<td>70,801</td>
<td>± 0,019</td>
<td>39,32</td>
<td>± 0,02</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>71,349</td>
<td>± 0,019</td>
<td>40,09</td>
<td>± 0,02</td>
</tr>
</tbody>
</table>

Anhang 12: Tabellarische Übersicht über die Mittelwerte der Oberflächenspannungsmessung von Wasserglas bei 40° C inklusive der Fehler auf die Oberflächenspannung- und die Temperaturmesswerte.
Anhang 13: Ergebnisse der Oberflächenspannungsmessung von Denepox 40 bei 30° C. Als gestrichelte Linien sind die Verläufe der einzelnen Messungen dargestellt.

<table>
<thead>
<tr>
<th>Zeitpunkt (min)</th>
<th>Oberflächen- spannung (Mittelwert)</th>
<th>Abweichung</th>
<th>Temperatur (°C)</th>
<th>Abweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>35,506</td>
<td>± 0,019</td>
<td>30,31</td>
<td>± 0,02</td>
</tr>
<tr>
<td>16</td>
<td>35,303</td>
<td>± 0,018</td>
<td>30,33</td>
<td>± 0,02</td>
</tr>
<tr>
<td>24</td>
<td>35,799</td>
<td>± 0,019</td>
<td>30,36</td>
<td>± 0,02</td>
</tr>
<tr>
<td>32</td>
<td>36,356</td>
<td>± 0,017</td>
<td>30,32</td>
<td>± 0,02</td>
</tr>
</tbody>
</table>

Anhang 14: Tabellarische Übersicht über die Mittelwerte der Oberflächenspannungsmessung von Denepox 40 bei 30° C inklusive der Fehler auf die Oberflächenspannung- und die Temperaturmesswerte.
Anhang 15: Ergebnisse der Oberflächenspannungsmessung von Denepox 40 bei 40° C. Als gestrichelte Linien sind die Verläufe der einzelnen Messungen dargestellt.

<table>
<thead>
<tr>
<th>Zeitpunkt (min)</th>
<th>Oberflächenspannung (Mittelwert) [mN/M]</th>
<th>Abweichung [°C]</th>
<th>Temperatur [°C]</th>
<th>Abweichung [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>38,410</td>
<td>± 0,019</td>
<td>39,66</td>
<td>± 0,02</td>
</tr>
<tr>
<td>16</td>
<td>38,493</td>
<td>± 0,019</td>
<td>40,05</td>
<td>± 0,02</td>
</tr>
<tr>
<td>24</td>
<td>38,527</td>
<td>± 0,019</td>
<td>40,06</td>
<td>± 0,02</td>
</tr>
<tr>
<td>32</td>
<td>38,820</td>
<td>± 0,019</td>
<td>40,29</td>
<td>± 0,02</td>
</tr>
</tbody>
</table>

Anhang 16: Tabellarische Übersicht über die Mittelwerte der Oberflächenspannungsmessung von Denepox 40 bei 40° C inklusive der Fehler auf die Oberflächenspannung- und die Temperaturmesswerte.
Anhang 17: Ergebnisse der Oberflächenspannungsmessung des 2K-Bitumens bei 30° C. Als gestrichelte Linien sind die Verläufe der einzelnen Messungen dargestellt.

<table>
<thead>
<tr>
<th>Zeitpunkt</th>
<th>Oberflächen- spannung (Mittelwert)</th>
<th>Abweichung</th>
<th>Temperatur</th>
<th>Abweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>23,876</td>
<td>± 0,019</td>
<td>30,24° C</td>
<td>± 0,02</td>
</tr>
<tr>
<td>16</td>
<td>24,213</td>
<td>± 0,020</td>
<td>30,27° C</td>
<td>± 0,02</td>
</tr>
<tr>
<td>24</td>
<td>25,824</td>
<td>± 0,019</td>
<td>30,43 ° C</td>
<td>± 0,02</td>
</tr>
<tr>
<td>32</td>
<td>36,470</td>
<td>± 0,018</td>
<td>30,47° C</td>
<td>± 0,02</td>
</tr>
</tbody>
</table>

Anhang 18: Tabellarische Übersicht über die Mittelwerte der Oberflächenspannungsmessung des 2K-Bitumens bei 30° C inklusive der Fehler auf die Oberflächenspannung- und die Temperaturmesswerte.
Anhang 19: Messwerte und Mittelwert der Dichtemessung von Ultrafin 12 bei 30 °C

Anhang 20: Messwerte und Mittelwert der Dichtemessung von Ultrafin 12 bei 40 °C.
Anhang 21: Messwerte und Mittelwert der Dichtemessung von Ultrafin 12 mit 90% NaCl-gesättigter Lösung bei 30 °C.

Anhang 22: Messwerte und Mittelwert der Dichtemessung von Ultrafin 12 mit 90% NaCl-gesättigter Lösung bei 40 °C.
Anhang 23: Messwerte und Mittelwert der Dichtemessung von IM 4+ bei 30 °C.

Anhang 24: Messwerte und Mittelwert der Dichtemessung von IM 4+ bei 40 °C.
Anhang 25: Messwerte und Mittelwert der Dichtemessung von Wasserglas 37/40 bei 30 °C

Anhang 26: Messwerte und Mittelwert der Dichtemessung von Wasserglas 37/40 bei 40 °C
Anhang 27: Messwerte und Mittelwert der Dichtemessung von Denepox 40 bei 30 °C

Anhang 28: Messwerte und Mittelwert der Dichtemessung von Denepox 40 bei 40 °C
Anhang 29: Messwerte und Mittelwert der Dichtemessung des 2K-Bitumens bei 30 °C

Anhang 30: Kurvenverläufe der Viskositätsmessung von IM 4+ bei 30 °C
Anhang 31: Kurvenverläufe der Viskositätsmessung von IM 4+ bei 40° C

Anhang 32: Kurvenverläufe der Viskositätsmessung von Ultrafin 12 bei 30° C
Anhang 33: Kurvenverläufe der Viskositätsmessung von Ultrafin 12 bei 40° C

Anhang 34: Kurvenverläufe der Viskositätsmessung der mit 90% NaCl gesättigter Lösung angemischter Ultrafin 12 Suspension bei 30° C
Anhang 35: Kurvenverläufe der Viskositätsmessung der mit 90% NaCl gesättigter Lösung angemischter Ultrafin 12 Suspension bei 40° C

Anhang 36: Kurvenverläufe der Viskositätsmessung des 2K-Bitumens bei 30° C
Anhang 37: Kurvenverläufe der Viskositätsmessung von Wasserglas bei 30° C

Anhang 38: Kurvenverläufe der Viskositätsmessung von Wasserglas bei 40° C
Anhang 39: Kurvenverläufe der Viskositätsmessung von Denepox 40 bei 30° C

Anhang 40: Kurvenverläufe der Viskositätsmessung von Denepox 40 bei 40° C
Anhang 41: Häufigkeitsverteilung der Kontaktwinkelmessungen mit dem Injektionsharz Denepox 40 bei 30° und 40° C.

Anhang 42: Häufigkeitsverteilung der Kontaktwinkelmessungen mit dem Feinstmagnesiabinder IM 4+ bei 30° und 40° C.
Anhang 43: Häufigkeitsverteilung der Kontaktwinkelmessungen mit dem 2K-Bitumen bei 30° und 40° C.
Anhang 44: Tabellarische Auswertung der mit Wasserglas injizierten bGZ-Salzbeton Probenkörper (Nr. 9, 10, 12 und 16)

<table>
<thead>
<tr>
<th>Probenkörper</th>
<th>Schnitt</th>
<th>Riss Lokalität</th>
<th>Rissfüllung im Kontaktbereich</th>
<th>Injektion des Salzes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Kein Riss</td>
<td>Entfernung < 1 cm Kontaktbereich</td>
<td>Entfernung 1 bis 2 cm Kontaktbereich</td>
</tr>
<tr>
<td>9</td>
<td>S1_Links_I</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>S1_Links_A</td>
<td>X</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>S1_Rechts_I</td>
<td>X</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>S1_Rechts_A</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>S2_Links_I</td>
<td>x</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>S2_Links_A</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>S2_Rechts_I</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>S2_Rechts_A</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>S3_Links_I</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>S3_Links_A</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>S3_Rechts_I</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>S3_Rechts_A</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Summe P9</td>
<td></td>
<td>10</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>S1_Links_I</td>
<td>x</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>S1_Links_A</td>
<td>x</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>S1_Rechts_I</td>
<td>x</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>S1_Rechts_A</td>
<td>x</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>S2_Links_I</td>
<td>x</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>S2_Links_A</td>
<td>x</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>S2_Rechts_I</td>
<td>x</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>S2_Rechts_A</td>
<td>x</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>S3_Links_I</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>S3_Links_A</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

144
<table>
<thead>
<tr>
<th>Summe P10</th>
<th>12</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summe P12</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S3_Links_I</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3_Links_A</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>S3_Rechts_I</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>S3_Rechts_A</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>S1_Links_I</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>S1_Links_A</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>S1_Rechts_I</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>S1_Rechts_A</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>S2_Links_I</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>S2_Links_A</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>S2_Rechts_I</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>S2_Rechts_A</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>S3_Links_I</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>S3_Links_A</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>S3_Rechts_I</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>S3_Rechts_A</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>S3_Links_A</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3_Rechts_I</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3_Rechts_A</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summe P16</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Summe Gesamt</td>
<td>42</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>42</td>
<td>3</td>
</tr>
<tr>
<td>Prozent</td>
<td>88</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>88</td>
<td>6</td>
</tr>
<tr>
<td>Probenkörper</td>
<td>Schnitt</td>
<td>Riss Lokalität</td>
<td>Rissfüllung im Kontaktbereich</td>
<td>Injektion des Salzes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>----------------</td>
<td>-----------------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kein Riss</td>
<td>Riss entlang des Kontaktbereichs</td>
<td>Entfernung < 1 cm zum Kontaktbereich</td>
<td>Entfernung 1 bis 2 cm zum Kontaktbereich</td>
<td>Kat 1</td>
<td>Kat 2</td>
</tr>
<tr>
<td>2</td>
<td>S1_Links_I</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td>S1_Links_A</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td>S1_Rechts_I</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td>S1_Rechts_A</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td>S2_Links_I</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td>S2_Links_A</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td>S2_Rechts_I</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td>S2_Rechts_A</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td>S3_Links_I</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td>S3_Links_A</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td>S3_Rechts_I</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td>S3_Rechts_A</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Summe P2</td>
<td>0</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>S1_Links_I</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>7</td>
<td>S1_Links_A</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>7</td>
<td>S1_Rechts_I</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>7</td>
<td>S1_Rechts_A</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>7</td>
<td>S2_Links_I</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>7</td>
<td>S2_Links_A</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>7</td>
<td>S2_Rechts_I</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>7</td>
<td>S2_Rechts_A</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>S3_Links_I</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>S3_Links_A</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3_Rechts_I</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3_Rechts_A</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summe P7</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

S1_Links_I	x															
S1_Links_A	X															
S1_Rechts_I	x															
S1_Rechts_A	x															
S2_Links_I	x															
S2_Links_A																x
S2_Rechts_I	X															
S2_Rechts_A																
S3_Links_I																
S3_Links_A																
S3_Rechts_I	x															
S3_Rechts_A																
Summe P14	4	4	0	4	4	4	4	0	0	2	1	0				

S1_Links_I	x															
S1_Links_A	x															
S1_Rechts_I	x															
S1_Rechts_A	x															
S2_Links_I	x															
S2_Links_A	x															
S2_Rechts_I	x															
S2_Rechts_A	x															
S3_Links_I	X															

148
<table>
<thead>
<tr>
<th>S3_Links_A</th>
<th></th>
<th>x</th>
<th></th>
<th>x</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S3_Rechts_I</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>S3_Rechts_A</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Summe P17</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Summe Gesamt</td>
<td>9</td>
<td>14</td>
<td>15</td>
<td>10</td>
<td>13</td>
<td>19</td>
<td>13</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prozent</td>
<td>19</td>
<td>29</td>
<td>31</td>
<td>21</td>
<td>27</td>
<td>43</td>
<td>27</td>
<td>6</td>
<td>25</td>
<td>25</td>
<td>8</td>
<td>42</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

149
Anhang 46: Tabellarische Auswertung der mit Wasserglas injizierten Magnesiabinder MB10 Probenkörper (Nr. 1, 4, 13 und 18)

<table>
<thead>
<tr>
<th>Probenkörper</th>
<th>Schnitt</th>
<th>Riss Lokalität</th>
<th>Rissfüllung im Kontaktbereich</th>
<th>Injektion des Salzes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Kein Riss</td>
<td>Riss entlang des Kontaktbereich</td>
<td>Entfernung < 1 cm zum Kontaktbereich</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>S1_Links_I</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S1_Links_A</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S1_Rechts_I</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S1_Rechts_A</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S2_Links_I</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S2_Links_A</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S2_Rechts_I</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S2_Rechts_A</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S3_Links_I</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S3_Links_A</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S3_Rechts_I</td>
<td>X</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S3_Rechts_A</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Summe P1</td>
<td></td>
<td>1</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>

		S1_Links_I	x	x	X								
		S1_Links_A	x	x									
		S1_Rechts_I	x	x									
		S1_Rechts_A	x	x									
		S2_Links_I	x	x									
		S2_Links_A	x	x									
		S2_Rechts_I	x	x									
		S2_Rechts_A	x	x									
S3_Links_I	x												
S3_Links_A	x	x	x										
S3_Rechts_I	x	x	x										
S3_Rechts_A	x	x	x										

Summe P4

| 6 | 1 | 4 | 1 | 7 | 5 | 0 | 0 | 2 | 0 | 0 | 1 |

S1_Links_I	x										
S1_Links_A	x	x	x								
S1_Rechts_I	x	x	x								
S1_Rechts_A	x	x	x								

| 13 | | | | | | | | | | | |

S2_Links_I	x										
S2_Links_A	x	x	x								
S2_Rechts_I	x	x	x								
S2_Rechts_A	x	x	x								

S3_Links_I	x	x	x								
S3_Links_A	x	x	x								
S3_Rechts_I	x	x	x								
S3_Rechts_A	x	x	x								

Summe P13

| 2 | 1 | 7 | 2 | 7 | 4 | 1 | 0 | 0 | 1 | 1 | 1 |

S1_Links_I	x	x	x									
S1_Links_A	x	x	x									
S1_Rechts_I	x	x	x									
S1_Rechts_A	x	x	x									

18

S2_Links_I												
S2_Links_A												
S2_Rechts_I												
S2_Rechts_A												
S3_Links_I		x	x	x								

Aufgrund einer starken Beschädigung der Probe beim Sägen ist für diesen Schnitt keine Auswertung möglich.
<table>
<thead>
<tr>
<th>S3 Links</th>
<th>X</th>
<th>X</th>
<th>S3 Rechts</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summe P 18</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Summe Gesamt</td>
<td>11</td>
<td>18</td>
<td>47</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>Prozent</td>
<td>25</td>
<td>53</td>
<td>18</td>
<td>37</td>
<td>27</td>
</tr>
</tbody>
</table>
Anhang 47: Tabellarische Auswertung der mit Ultrafin 12 injizierten Magnesiabinder MB10 Probenkörper (Nr. 3, 8, 11 und 19)

<table>
<thead>
<tr>
<th>Probenkörper</th>
<th>Schnitt</th>
<th>Riss Lokalität</th>
<th>Rissfüllung im Kontaktbereich</th>
<th>Injektion des Salzes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Kein Riss</td>
<td>Entfernung < 1 cm zum Kontaktbereich</td>
<td>Entfernung 1 bis 2 cm zum Kontaktbereich</td>
</tr>
<tr>
<td>S1_Links_I</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1_Links_A</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1_Rechts_I</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1_Rechts_A</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2_Links_I</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2_Links_A</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2_Rechts_I</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2_Rechts_A</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3_Links_I</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3_Links_A</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3_Rechts_I</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3_Rechts_A</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summe P3</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Keine Riss entlang des Kontaktbereichs.
<table>
<thead>
<tr>
<th>S3_Links_I</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>S3_Links_A</th>
<th>X</th>
<th>X</th>
<th>S3_Rechts_I</th>
<th>X</th>
<th>X</th>
<th>S3_Rechts_A</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1_Links_I</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>S1_Links_A</td>
<td>X</td>
<td>X</td>
<td>S1_Rechts_I</td>
<td>X</td>
<td>X</td>
<td>S1_Rechts_A</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>S2_Links_I</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>S2_Links_A</td>
<td>X</td>
<td>X</td>
<td>S2_Rechts_I</td>
<td>X</td>
<td>X</td>
<td>S2_Rechts_A</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>S3_Links_I</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>S3_Links_A</td>
<td>X</td>
<td>X</td>
<td>S3_Rechts_I</td>
<td>X</td>
<td>X</td>
<td>S3_Rechts_A</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Summe P8

| 4 | 1 | 5 | 2 | 8 | 4 | 0 | 0 | 1 | 1 | 0 | 1 |

S1_Links_I	X	X	X	S1_Links_A	X	X	S1_Rechts_I	X	X	S1_Rechts_A	X	X
S2_Links_I	X	X	X	S2_Links_A	X	X	S2_Rechts_I	X	X	S2_Rechts_A	X	X
S3_Links_I	X	X	X	S3_Links_A	X	X	S3_Rechts_I	X	X	S3_Rechts_A	X	X

Summe P11

| 0 | 0 | 7 | 5 | 4 | 7 | 1 | 0 | 2 | 0 | 0 | 1 |

S1_Links_I	X	X	X	S1_Links_A	X	X	S1_Rechts_I	X	X	S1_Rechts_A	X	X
S2_Links_I	X	X	X	S2_Links_A	X	X	S2_Rechts_I	X	X	S2_Rechts_A	X	X
S3_Links_I	X	X	X	S3_Links_A	X	X	S3_Rechts_I	X	X	S3_Rechts_A	X	X

154
S3_Links_A	x	x										
S3_Rechts_I	x											
S3_Rechts_A	x											
Summe P19	3	0	8	1	5	6	1	0	0	1	1	
Summe Gesamt	9	2	28	9	20	23	3	2	3	3	1	5
Prozent	19	4	58	19	42	48	6	4	25	25	8	42