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Abstract 

Hydraulic fracturing technology is usually required to allow tight gas to escape from the low-

permeability reservoir and flow through the wellbore to the surface. So far, there are no 

numerical tools in the petroleum industry which can optimize the whole process from 

geological modeling, hydraulic fracturing until production simulation with the same 3D model 

with consideration of the thermo-hydro-mechanical coupling. In addition, optimization design 

should be considered from the perspective of production, especially for multiple hydraulic 

fractures. Thus, the simulation of the production phase with created fractures in one model is 

very important for the optimization design. 

In this dissertation, a workflow and a numerical tool chain were developed for design and 

optimization of multistage hydraulic fracturing in horizontal well with regard to a maximum 

productivity of the tight gas wellbore. Frac-Simulator was developed to match the fracturing 

operation history automatically and optimize the hydraulic fracturing with consideration of 

thermal effect and gel-breaking. The temperature change will affect the fracture propagation 

process directly through the thermal stress as well as expansion or shrinkage. The temperature 

can also influence the fluid properties (gel breaking) as well. In order to maximize the 

productivity of the above mentioned tight gas wellbore, Frac-Produ Simulator was developed 

for the simulation of the gas production. The change of stress tensor ij and the fracture 

conductivity FCD during gas production are also taken into account. 

After the verification of the developed Simulators, a full 3D reservoir model is generated based 

on a real tight gas field in the North German Basin. After the history matching of the stimulation 

phase, the same 3D reservoir model is generated, including formations and the created fractures 

with their own fracture geometries and proppant concentration. The bottomhole pressure 

development derived from the measured treating pressure was used as input data for the stress 

sensitive reservoir simulation. Through analysis of simulation results, a new calculation 

formula of FCD was proposed, which takes the proppant position and concentration into account 

and can predict the gas production rate of each fracture more accurately. However, not only 
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FCD but also proppant distribution and hydraulic connection of stimulated fractures to the well, 

geological structure and the interaction between fractures are determinant for the gas 

production volume of each fracture. Hence, the relationship between gas production rates from 

each fracture in the later production is different from that at the beginning. 

For the sensitivity analysis numerical simulations were carried out with different design 

parameters, including proppant type, viscosity of the injection fluid and injection time. The 

results show that the influences of proppant type on fracture geometry and fracture conductivity 

is much larger than that of the viscosity of the injection fluid, while the influences of the 

injection time are the smallest. For the optimal fracture treatment design different numerical 

simulations with varied fracture number/spacing and treatment schedule were performed. The 

results show that the injection rate is not the higher the better. If it is too high, the fracture width 

will become wider and the proppant will settle down easier to the bottom, which leads to 

insufficient hydraulic connection between fracture and wellbore. The fracture spacing should 

also not be too small, otherwise the influence area/drainage radius is not enough. Thus, there 

is no unique criterion to determine the optimal number and spacing of the fractures, it should 

be analyzed firstly in detail to the actual situation and decided then from case to case. 
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1 Introduction 
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       - 1 - 

1 Introduction 

1.1 Motivations and objectives 

Energy is one of the most critical factors for the economic development. Due to the world’s 

increasing energy consumption and the climate change, the strategic energy storage draws a lot 

of attention (Kolditz et al. 2015). Tight gas has become one of the most important fields in 

unconventional natural gas exploration and development. Large-scale development and 

utilization of tight gas in the United States not only boosted the rapid recovery of US natural 

gas production, but also promoted the progress of tight gas exploration and development in 

many countries (Figure 1.1). The application of horizontal drilling and hydraulic fracturing 

technologies made it possible to develop the U.S. tight and shale gas resource, contributing to 

nearly doubling of the estimates for the total U.S. technically recoverable natural gas resources 

over the past decade. Tight gas, shale gas, and coalbed methane resources in Canada and China 

account for about 80% of total production in 2040 in those countries.  

 

Figure 1.1 Natural gas productions by type in the United States, China and Canada, 2012 and 

2040 (EIA 2016) 
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Tight gas reservoir is known as "tight" because it has a low permeability (less than 0.1 md) and 

is usually composed of so-called hard rocks like sandstone. Tight gas reservoirs require 

stimulation because the permeability of the formation is simply not high enough for the well to 

produce natural gas, of course, taking the economic aspects into account. To increase the 

wellbore/reservoir connection by means of a high contact area and to enhance the well 

permeability capacity (net thickness × permeability) to a technically possible maximum 

hydraulic fracture height (hf), hydraulic fracturing (Figure 1.2) is referred to as a suitable 

reservoir stimulation technique on tight gas reservoirs. Especially under difficult conditions 

and limited reservoir connection, more obvious on completed horizontal wells, multiple 

hydraulic fracture treatments were performed to develop an economic well productivity and to 

access sufficient dynamic gas-in place volumes. 

For the hydraulic fracturing treatment design many parameters should be taken into 

consideration. The main design parameters are treatment schedule (e.g. injection rate/volume/ 

time, proppant concentration, total injected proppant mass and proppant injection time), fluid 

properties (e.g. type, density, viscosity and additives), proppant properties (e.g. type, density, 

diameter, strength and hydraulic conductivity under closure stress) etc. These parameters are 

determined by geological conditions, rock mechanical and hydraulic properties, temperature, 

in-situ stress state, reservoir pressure, stress and conductivity requirements etc. Actually, the 

optimal number and spacing of fracture treatments are based on the reservoir permeability, the 

length of the well section within the potential layer (distance between the two border fractures), 

net thickness, fracture half-length, fracture conductivity, the expected compartments (estimated 

by means of LWD interpretations: sub-seismic faults and/or facies changes), vertical to 

horizontal permeability anisotropy ((kv/kh)-ratio) and the drainage radius (or assumed reservoir 

borders) (Koehler & Kerekes 2006a). The optimization can be achieved through numerical 

simulation. 
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Figure 1.2 Cross-sectional views of the hydraulic fracturing (Economides & Nolte, 2000) 

 

Modern experimental equipment, fast development of computer techniques and the simulation 

methods make the study of coupled THMC processes possible. Different numerical codes have 

been developed in recent years, which are able to consider all the process together, such as 

OpenGeoSys (Kolditz et al. 2012), DuMux (Flemisch et al. 2011), COMSOL Multiphysics 

(COMSOL 2012) etc. Based on the experimental results and analysis a bank of benchmarks of 

coupled THMC processes have been set up (Kolditz et al. 2016). Hydraulic fracturing involves 

many physical processes such as stress change and deformation of rock formation induced by 

pore pressure change in fractures and pores, fluid flow within fracture and formation including 

their interactions, fracture propagation, proppant transport and settling inside the fracture. 

These processes are very complicated, and the mathematical modeling of these Multiphysics 

processes is a challenging task. From 1950s the first theoretical models of hydraulic fracturing 

were created and then gradually developed, e.g. KGD (plane strain) (Khristianovic & Zheltov 

1955, Geertsma & Klerk 1969) and PKN 2D models (Perkins & Kern 1961, Nordgren 1972), 

lumped and cell based pseudo 3D models as well as planar 3D model. They were solved by 

analytical, semi-analytical or fully numerical methods respectively (Adachia et al. 2007, 

Economides & Nolte 2000, Siebrits & Peirce 2002). However, due to the complexity of the 
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involved coupled processes as well as the challenges from mathematical modeling of this 

Multiphysics process, much work is still to be done in the future. 

In the petroleum industry there are many standard tools for the design of hydraulic fractures 

and prediction of gas productions. E.g. reservoir model generation, hydraulic fracturing 

simulation and gas production simulation are usually carried out using Petrel, FracPro, MFrac 

as well as ECLIPSE separately. Petrel is a product of Schlumberger, which used to build 3D 

geological models of petroleum reservoirs (Schlumberger 2014). MFrac used semi-analytic 

methods and formulated between a pseudo-3D and full 3-D type model with an applicable half-

length to half-height aspect ratio greater than about 1/3 (Meyer 1989). MFrac accounts for the 

coupled parameters affecting fracture propagation and proppant transport (Meyer 2012). 

However, MFrac does not consider the hydro-mechanical conditions under contact condition 

after fracture closure. The simulation is forced to stop when the proppant reaches its maximum 

value of the compacting factor, even when the most upper part of the fracture area is still open 

without proppant (full closure is not yet reached). That means, the area of the proppant 

placement is underestimated. In fact, the fluid pressure within the fracture under contact could 

be smaller than the normal stress perpendicular to the fracture wall. Therefore, it is difficult to 

simulate the compact proppant at the upper part of the fracture during the closure process. The 

simulated fracture geometry is too ideal. ECLIPSE is also a product of Schlumberger, which is 

used to simulate the production of black oil, compositional, thermal, and streamline reservoir. 

Unfortunately, ECLIPSE can only be used in the reservoir simulation. It is not capable for 

geomechanical simulation. In ECLIPSE the fracture can only be considered through an 

equivalent continuum approach and the fracture properties are independent on the stress 

conditions. So far, there are no numerical tools in the petroleum industry which can optimize 

the whole process from geological modeling, hydraulic fracturing until production simulation 

with the same 3D model with consideration of the thermo-hydro-mechanical coupling. There 

are always conversion and adaption of the results from different stages with different softwares. 

The optimization of a single fracture during the stimulation phase does not represent the 

performance of the whole horizontal well. In the petroleum industry, the fractures are normally 
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designed one after another. 3D production simulation will not be performed during this phase. 

However, the fractures will influence each other during the production. Therefore, optimization 

design should also be considered from the perspective of production, especially for multiple 

hydraulic fractures. The simulation of the production phase with the created fractures in one 

model is very important for the optimization design. 

In this dissertation, the complete modeling from multiple hydraulic fractures initiation to 

production with the same full 3D simulation model, as well as smoothly integration of the 

simulated multiple fracture geometries and conductivities into production simulation was 

performed. It was realized based on the hydraulic fracturing model developed by Zhou and 

Hou (2013), Zhou et al. (2014), Li et al. (2016) and Feng et al. (2016). 

The objective of this thesis therefore is the optimization study of tight gas production by using 

multistage hydraulic fracturing technology based on numerical simulations and the measured 

data from the tight gas reservoir Leer in the North German Basin. 

 

1.2 Thesis outline 

In the framework of this thesis the concept and tools were developed for the optimization study 

of tight gas production by using multistage hydraulic fracturing technology.  

The fundamental of the whole concept was the numerical model for the hydraulic fracturing 

and the associated reservoir simulation model for the gas production. Such concept was 

realized by coupling of the previously developed 3D hydraulic fracturing model in FLAC3Dplus, 

the multiphase multicomponent flow model in TOUGH2MP, as well as the software optiSLang 

for sensitivity analysis and robust design optimization. With these tools, 3D simulation model 

can be generated according to the measured geological and geophysical data of the tight gas 

field and verified against the measured treatment and production data. Based on the verified 

models, numerical simulations with varied parameters can be carried out for the optimization 

of tight gas production regarding the whole process from the beginning of the stimulation until 

the end of the production. 
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Figure 1.3 describes the whole concept and flow chart of this thesis. Firstly, the Frac-Simulator 

FLAC3Dplus-optiSLang was developed for the history matching of multi-stage hydraulic 

fracturing phase. Then the FracProdu-Simulator FLAC3Dplus-TMVOCMP-optiSLang was 

developed for the history matching of the gas production phase. Both tools were verified by 

numerical simulation examples. As the case study the natural gas field Leer located in the North 

German Basin was selected. A full 3D hydraulic fracturing model was generated based on the 

geological and geophysical data of this gas field. For the stimulation phase, the bottomhole 

pressure (BHP) development derived from the measured treating pressure (WHP) was set as 

the goal of history matching. After the history matching a corresponding full 3D reservoir 

simulation model was generated based on the data from the gas field, including the created 

hydraulic fractures with their own geometry and proppant distribution obtained during the 

hydraulic fracturing simulation. For the history matching of the production phase, the 

bottomhole pressure (BHP) development derived from measured well head pressure (WHP) 

was used as input data for the stress sensitive reservoir simulation. The gas production rate was 

set as the goal of history matching. To maximize the productivity of the tight gas wellbore, 

numerical simulations were carried out with different design parameters, including proppant 

type (density, diameter as well as stress-dependent conductivity), viscosity of the injection fluid 

and injection time to obtain their sensitivities. At the last stage, the treatment schedule and 

fracture spacing were varied based on the history matched model. Various numerical 

simulations of hydraulic fracturing and subsequent reservoir simulations were carried out for 

the optimization goal. A new dimensionless fracture conductivity was proposed to better 

evaluate the hydraulic fracturing treatment results. 
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Figure 1.3 Flow chart of this thesis 

 

The following contents are integrated in this thesis. 

In Chapter 2, the research location, geological conditions are introduced. The development 

history, including the drilling of horizontal wells and hydraulic fracturing are reviewed. 

Chapter 3 introduces the fundamentals of hydraulic fracturing and application in Leer, such as 

fracturing fluids, well types and fracture orientation, procedure and stages of hydraulic 

fracturing, bottomhole pressure record, formation characterization (from well test and well 

logging) and fracture conductivity lab testing. 

In Chapter 4, the historical development of hydraulic fracturing modeling is introduced, e.g. 

penny-shaped fractures, 2D, planar 3D and pseudo-3D. A real 3D model with FLAC3Dplus is 

used as the basic simulator for the numerical simulation in this dissertation. 

In Chapter 5, the developed Frac- and FracProdu-Simulators optiSLang-FLAC3Dplus and 

optiSLang-FLAC3Dplus-TMVOCMP for the optimization of multistage hydraulic fracturing 

treatment were introduced. After the basic introduction, verifications of the simulators were 
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performed. 

In Chapter 6, numerical simulations with the developed simulators were performed for the 

history matching of the stimulation and production phase. By analyzing and comparing the 

simulation results, a new calculation formula of dimensionless fracture conductivity FCD was 

proposed for better prediction of the subsequent production phase, which is recommended to 

use in fracturing treatment design. Based on the history matched stimulation model and 

production model, sensitivity analysis with consideration of proppant type, viscosity of the 

injection fluid and injection time/rate, variations of the treatment schedule and fracture 

number/spacing, were performed to optimize the tight gas production. Then the optimized 

parameter design was applied for the production in a tight gas reservoir in the North German 

Basin. 

The innovation of this study lies in the following points. On one hand the complete modeling 

from multiple fractures initiation to production with the same 3D simulation model, as well as 

the smoothly integration of the simulated multiple fractures geometry and conductivities into 

production simulation was realized. On the other hand, a new calculation formula of 

dimensionless fracture conductivity FCD was proposed for a better fracture treatment design. 
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2 Tight gas field Leer in the North German Basin 

2.1 North German Basin 

The North German Basin (Figure 2.1) is a passive-active rift basin located in central and west 

Europe, lying within the southeastern most portions of the North Sea and the southwestern 

Baltic Sea and across terrestrial portions of northern Germany, Netherlands, and Poland 

(Hubscher et al. 2010). The North German Basin is a sub-basin of the Southern Permian Basin 

that accounts for a composite of intra-continental basins composed of Permian to Cenozoic 

sediments, which have accumulated to thicknesses around 10–12 kilometers (Scheck & Bayer 

1999, Gemmer et al. 2003). 

 

Figure 2.1 The North German Basin located in Western Europe, represented as the green region 

defined by USGS 
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The evolution of the North German Basin experienced the following phases: Initial rifting, 

main phase of subsidence, secondary rifting, doming, tertiary rifting, inversion and final 

subsidence. The initiation of the Northern German Basin took place in the Late Carboniferous 

approximately 295-285 Ma (million years ago) in association collapse of the Variscan Orogeny 

due to wrenching tectonics in the over-thickened crust in the northern foreland of the Variscan 

Orogeny (Ziegler 1993, Brink 2005, Van Wees 2000). The last phase of subsidence occurred 

during the Cenozoic.  

The stratigraphy sequence of sediments recorded the depositional history of the North German 

Basin, which make up the basin. The sedimentary basin was assembled above the Lower 

Paleozoic crystalline basement formed during the Caledonian Orogeny about 420-400 Ma 

(Sajjad, 2013). 

Figure 2.2 breaks down the stratigraphic units of the North German Basin through time. The 

lowermost stratigraphic unit of the North German Basin is the lower Rotliegend group, which 

is from Permian of the Paleozoic era and composed primarily ignimbrites, rhyolites, and 

andesites, while also having minor amounts basalts (George 1993). Rotliegend is also the target 

formation of the tight gas field Leer, which was studied in this thesis. 
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Figure 2.2 Stratigraphic units of the North German Basin through time (Wikipedia 2017_1) 

 

2.2 Tight gas sandstone and Rotliegend sandstone 

Currently, most of the natural gas is from suitably porous rocks in conventional reservoirs. The 

gas flow into the well does not require any extra technological intervention. In tight gas 

reservoirs, however, the natural gas is in the pore spaces of relatively impermeable sandstone 

strata (permeability between 0.01 – 0.1 mD and porosity < 10%, Figure 2.3), where it must be 

“mobilized” before it can be extracted. This is where hydraulic fracturing is used: millimeter-

thin flow paths, known as fractures, are created in the reservoir by a pressurized liquid. When 

injection is stopped and hydraulic pressure removed from the well, proppants hold the fractures 
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open and thus prevent the fractures from closing. This created and propped paths could increase 

the gas production by many hundreds of percent in some cases. 

 

Figure 2.3 Conventional, near tight and tight gas sand definition based on the in-situ 

permeability (Rezaee et al. 2012) 

 

Rotliegend sandstone is a kind of tight gas sandstone. It is a lithostratigraphic unit of latest Late 

Carboniferous, the Early Permian, and the Middle Permian to early Late Permian age (STDK 

2016). It lies in the subsurface of large areas in Central and West Europe. The Rotliegend 

mainly consists of sandstone layers and is usually covered by the Zechstein. In the north of 

Germany and in the Netherlands the Rotliegend is usually subdivided into two groups: A Lower 

Rotliegend Group (mostly volcanic rocks: tuffs and basaltic lavas) and an Upper Rotliegend 

Group (sandstones and siltstones).  

The structure of the studied natural gas field Leer near the German/Dutch border is in a 

structural high block, which is located at a depth of about 4400 m TVDss. The gas bearing 

Upper Rotliegend sandstones are mainly composed of aeolian dunes and sandflat deposits with 

occasionally interbedded mudflats and sparse fluvial deposits. The depositional setting of the 

Bahnsen-, Wustrow- and Ebstorf-Member can generally be characterized by a desert plain 

system (Koehler & Kerekes 2006a). 
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2.3 Historical field development 

The gas reservoir Leer lies in the North German Basin (Figure 2.4). According to Koehler & 

Kerekes (2006a), the Leer structure is located about 5 km SSE of the city Leer, which belongs 

to the Ostfriesland trend of the North German Rotliegend Play as well as. 

 

Figure 2.4 Prospect Location Map: Ostfriesland Licenses & Gas Fields (Koehler 2004) 

 

The exploration well Leer Z2 (Figure 2.5) for the gas production was drilled in 1971, which 

proved gas bearing “tight” sandstones in Bahsen- and Wustrow-Member (Figure 2.6). A 

dynamic original gas in-place (OGIP) is only 5 Mio. m3 (Vn). So, Leer Z2 well was plugged 

and abandoned, because it didn’t reach an economic production. After that a vertical well Leer 

Z3 (Figure 2.5) was drilled in 1982. However, it reached the same unsatisfied results. Until 

1996 Leer Z3 well produced only 20.4 Mio. m³ (Vn). The well had accessed a dynamic OGIP 

of 180 - 220 Mio.m3 (Vn). In 1997 the first successful well project was gained by the fracture 
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stimulated sidetrack Leer Z3a (Figure 2.5) of the prior Leer Z3. It was stimulated by a proppant 

fracture treatment with 70 tons of CarboProp 20/40. The sidetrack had proven a dynamic OGIP 

of 600 Mio.m3 (Vn). But because of the compartmentalization the dynamically allocated OGIP 

is not sufficient for new conventional vertical stimulated well projects. The positive results of 

the fracture stimulated sidetrack Leer Z3a actuated the further development of the Leer block 

to reach more compartments. (Koehler & Kerekes 2006a) 

 

Figure 2.5 Gas Field Leer – Structure Map – Top Wustrow-Sandstone (Koehler & Kerekes 

2006b 

 

The target tight gas layer lies in two types of sandstones: Bahsen- and Wustrow-Member 

(Figure 2.5).  
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Figure 2.6 Target Tight gas bearing in Bahsen- and Wustrow-Member sandstones (Koehler 

2004) 

 

Thanks to the development of the drilling and fracturing technology a horizontal well with 

multiple transverse fractures were accessed the reservoir in 2005, which was verified by a new 

seismic survey for the potential Leer Rotliegend structure. 

Based on literature studies and experiences of different “tight gas” researches and projects from 

Germany and other countries, the horizontal well project Leer Z4 (Figure 2.5) was launched. 

The research object of this dissertation focuses on Leer Z4. To estimate the maximum stress 

(the PFP direction), re-oriented cores investigations and well breakouts were performed. The 

NNW-SSE direction of the main stress direction is in accordance to the DGMK study 593-5 

(Müller 2004). The horizontal well Leer Z4 was drilled with an Azimuth of 76° in an ENE 

direction, which is additionally the direction of the maximum wellbore stability. 

A 680 m long horizontal well section was drilled at the depth of about 4500 m, which lies in 



2 Tight Gas Field Leer in the North German Basin 

 Optimization of Multistage Hydraulic Fracturing Treatment for Maximization of the Tight Gas Productivity                                        

       - 16 - 

the Wustrow-Member of the Rotliegend structure in Leer Z4 (Figure 2.7). A large fault was 

observed at the beginning of the horizontal section of the well through seismic exploration 

(Figure 2.5). This fault is not permeable and would be regarded as a close boundary during the 

later gas production. 

 

Figure 2.7 Leer Z4: Geological W-E-cross section trough the central Leer block with PreSDM 

seismic (Koehler & Kerekes 2006a) 

 

Figure 2.8 shows the onsite layout: Frac- and test equipment of Project Leer Z4. 
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Figure 2.8 Layout: Frac- and test equipment of Project Leer Z4 (Koehler & Kerekes 2006b) 
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3 Fundamentals of hydraulic fracturing and application in Leer 

3.1 Fracturing fluids, well types and fracture orientation 

The typical composition of hydraulic fracturing fluid is about 99.5% water with proppant as 

well as 0.5% chemicals additives (Ground Water Protection Council 2009, Hartnett-White 

2011). The exact formulation varies depending on the well. Proppants, which are granular 

materials, props the created flow paths, so that they remain open. Typical proppants are silica 

sand, resin-coated sand, bauxite, and man-made ceramics. The selection of the proppants 

depends on the formation permeability and required grain strength. If the stress in some 

formations is great enough to crush the grains of the natural silica sand, higher-strength 

proppants such as bauxite or ceramics will be used. Silica sand is the most commonly used 

proppant, though ceramic proppants of uniform size and shape are believed to be more effective. 

Chemical additives are required to enable the proppants to be carried into the fractures. They 

thicken the fluid and enable it to transport the filling material (proppants) evenly through the 

flow paths. Without a carrying fluid, the filling material would immediately sink to the bottom 

of the well and block the wellbore. The most commonly used chemical additives are gels, gel 

breakers, biocides, friction reducers, surfactants and salt. Gels make the water more viscous 

and ensure that filling material such as small ceramic spheres stay suspended instead of just 

sinking to the bottom. Gel breakers return the water to a more liquid state, so that the fracturing 

fluid can be pumped back more easily to accelerate the closure process. 

For fracture stimulation of Leer Z4 all injected fluids were heated up to about 50° to reduce the 

completion stress. And 4% KCl was added to the fluids for clay protection. To maintain high 

fracture conductivity under high closure stress environment high strength sintered bauxite 

proppants in 20/40 mesh size (CarboHSP 20/40) were applied. The stimulations were 

performed using a low polymer fracturing fluid for high temperature (150°C) named as Sirocco 

gels and was provided by the service company Halliburton (Koehler & Kerekes 2006a).The 

technological breakthroughs in drilling and completion technology made the horizontal 
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wellbores (Figure 3.1) much more economical since the early 2000s. Particularly in shale 

formations, which is much deeper (about 2000 m) than conventional gas reservoir and do not 

have sufficient permeability to produce economically with a vertical well. Horizontal well 

increased wellbore exposure to formation than conventional vertical wellbores. 

 

Figure 3.1 Horizontal and vertical drilling (Crone 2015) 

 

Fracture orientation depends on the in-situ stress state of the formation. Hydraulic fractures 

will always propagate perpendicular to the minimum principal stress. Based on the experience, 

horizontal fractures will occur at depth less than 600 m because the overburden stress at these 

depths is the minimum principal stress. In this case, horizontal fractures are formed (Figure 3.2) 

and fractures are parallel to the bedding plane of the formation. 

As depth increases beyond approximately 600 m, overburden stress increases by approximately 

0.23 bar/m, making the overburden stress the dominant stress. That means the horizontal 
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confining stress is now the least principal stress. Since hydraulically induced fractures 

propagate in the direction perpendicular to the least stress, vertical fractures are formed (Figure 

3.2). 

 

Figure 3.2 Fracture orientation: horizontal fracture and vertical fracture as a function of the 

primary stress state (modified from Martin 2017) 

 

Besides, the vertical factures development is also depending on the wellbore orientation. If a 

horizontal well is drilled in the direction of minimal horizontal stress, the fractures created by 

hydraulic fracturing will be perpendicular to the wellbore. These are transverse fractures. When 

the well is drilled along the maximal horizontal stress, the fractures created will be parallel to 

the wellbore. They are longitudinal fractures (Figure 3.3). 
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Figure 3.3 Fracture development as function of wellbore orientation (modified from Rahim et 

al. 2012) 

 

At the same time, the multi-stage and multi-cluster per stage fracture treatments (Figure 3.3) 

in horizontal wellbores create a large stimulated reservoir volume (SRV) that increases both 

the production and the estimated ultimate recovery (EUR) (Bruce et al. 2010). It should be 

noted that each fracture should have sufficient length and conductivity, to maximize the 

production performance from horizontal wells with multiple fractures. In addition, each 

fracture needs to be properly cleaned up after the treatment. The interference occurring between 

fractures should be minimized based on the placement and the total number of the factures. 

This requires proper fracture treatment design. 

 

3.2 Procedure and stages of hydraulic fracturing 

The oil and gas industry defines hydraulic fracturing as the actual process of injecting high-

pressured fluids in underground to create fractures. It is not a part of the drilling process, but a 

technique used after the well drilling. The procedure of hydraulic fracturing is listed below 
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(Figure 3.4): 

1. Wellbore (vertical or horizontal) drilling till target formation 

2. Production casing inserted into borehole, then surround with cement 

3. Casing is perforated blasting with small holes through pipe, cement and formation rock 

4. After perforation, the well is hydraulically fractured with high-pressured fracturing 

fluids (water, sand and chemical additives) 

5. Oil and gas flow back up the pipeline to the wellhead through the sand propped 

man-made fractures. 

 

Figure 3.4 Hydraulic fracturing procedure in the reservoir (modified from Tip of the Mitt 

Watershed Council 2013)  
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Hydraulic fracturing happens in steps called stages. A typical hydraulic fracture program will 

follow the stages below. 

1. Data stage: to estimate the fracture specific data (like closure pressures, friction data 

and leakoff) all intervals were examined by a Formation Breakdown within a first Data 

Frac, a Mini Frac and a second Data Frac. 

1. Pad stage: Approximately hundreds cubic meters of slick water without proppant fills 

the wellbore to break the formation and initiate the hydraulic fracturing of the target 

formation. 

2. Proppant stage: A mixture of water and proppant (sand, ceramic etc.) is fed into the 

wellbore. The proppant will be carried by the fracturing fluid into the formation and 

deposited, to prop the fracture and hold it open once the pressure is reduced. 

3. Flush stage: A volume of fresh water is pumped down the wellbore to flush out any 

excess proppant that may be present in the wellbore. 

 

3.3 Bottomhole pressure record 

When pumping continues, hydraulically induced fracture propagates from the wellbore into 

reservoir. At the same time, the fracturing fluid leaks off from the fracture into the surrounding 

rock medium. It is important to observe that the opening of the fracture is maintained by the 

net pressure (fluid pressure minus the minimum in-situ stress), while the fluid leak-off rate 

from the fracture is caused by the difference between the fluid pressure and the reservoir 

pressure. (Yew & Weng 2015) 

A typical bottomhole pressure record is illustrated in Figure 3.5. The maximum pressure is 

named as initial breakdown pressure Pb. When a fracture is initiated at the borehole surface, 

the pressure drops but not always in the field. The almost constant pressure is the propagation 

pressure Pprog, which causes the fracture propagation into the reservoir. The pressure drops 

immediately after the stop of the pumping due to the vanishing frictional pressure loss, which 

occurs normally in the pipe and perforation. After that the fluid pressure continues to decrease 
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slowly to the reservoir pressure due to leak off process. The transition point after pumping is 

called the shut-in pressure Psi or the instantaneous shut-in pressure, ISIP. However, the 

fracturing fluid continues to leak off from the fracture surface and the fracture width continues 

to decrease. This will stop until the fluid pressure inside the fracture reaches equilibrium with 

the minimum in-situ stress. At this point, the fracture closes and is propped by the proppant. 

The fracture closure pressure, which can be determined from the pressure decline analysis, is 

taken as a measure of the minimum in-situ stress. 

 

Figure 3.5 A bottomhole pressure record (Yew & Weng 2015) 

 

During the hydraulic stimulation the bottomhole pressure is sum of all the pressure acting on 

the bottomhole. It is derived from the directly measured well head pressure (WHP) plus the 

hydrostatic pressure minus the near-wellbore friction pressure loss and fluid flow pressure loss 

in the wellbore (Eqs. (3.1) - (3.2), Economides & Nolte 2000).  

𝐵𝐻𝑃 = 𝑊𝐻𝑃 + 𝜌𝑓𝑙𝑢𝑖𝑑𝑔ℎ − ∆𝑝𝑛𝑒𝑎𝑟 𝑤𝑒𝑙𝑙𝑏𝑜𝑟𝑒 − ∆𝑝𝑓𝑙𝑜𝑤 (3.1) 
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∆𝑝𝑛𝑒𝑎𝑟 𝑤𝑒𝑙𝑙𝑏𝑜𝑟𝑒 = ∆𝑝𝑃𝑒𝑟𝑓𝑜 + ∆𝑝𝑡𝑜𝑟𝑡 + ∆𝑝𝑚𝑖𝑠𝑎𝑙𝑖𝑔𝑛 (3.2) 

where BHP is the bottom hole pressure [Pa], WHP is the well head pressure [Pa], ρfluid is the 

fluid density [kg/m3], g is the gravitational acceleration [m/s2], h is the true vertical depth [m], 

∆pnear wellbore is the near-wellbore friction pressure loss [Pa], ∆pPerfo is the perforation friction 

[Pa], ∆ptort is the fracture turning (i.e., tortuosity) friction [Pa], ∆pmisalign is the perforation 

misalignment friction [Pa], ∆pflow is the fluid flow pressure loss in the wellbore [Pa]. 

Especially with a well path in the direction of the minimum stress direction, orthogonal to the 

preferred fracture plain (PFP), transverse fractures will be formed. In this situation the 

connection area between well and fracture is minimum but crucial. To get a relatively good 

fracture-to-well contact “big hole”-perforations and high fracture conductivity in the near 

wellbore environment should be established (Koehler & Kerekes 2006). Romero (1995) has 

proposed the perforation friction for linear fluids as (Eq. (3.3)): 

∆𝑝𝑃𝑒𝑟𝑓𝑜 = 𝐶1 ∙
𝑞𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛

2 ∙ 𝜌𝑓𝑙𝑢𝑖𝑑

𝑛𝑃𝑒𝑟𝑓𝑜
2 ∙ 𝐶𝑑

2 ∙ 𝑑𝑃𝑒𝑟𝑓𝑜
4  (3.3) 

Where C1 is 0.2369 (“oil field”-units) and 2.2446⋅108 (for SI-units), qInjection is the total flow 

rate [m3/s], ρfluid is the fluid density [kg/m3], nPerfo is the number of effective perforations [-] 

(from step rate down tests), dPerfo is the perforation diameter at the casing [m] and Cd is the 

Form factor [-] (Cd ≤ 0.89, C = 0.56+1.65·104·M, with M = Proppant quantity, that has passed 

the perforation, in kg). The Form factor shows the effect of the perforation entrance erosion on 

the friction pressure (Figure 3.6). 
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Figure 3.6 The evolution of the form factor Cd with the entrance erosion (modified from Crump 

and Conway 1988) 

 

Tortuosity is a rotating channel that connects the wellbore and the main fracture. When the 

wellbore orientation is not designed properly in the stress field, tortuosity is the main 

phenomenon affecting the execution of a hydraulic fracturing treatment (Figure 3.7). The 

fracture width is proportional to the net pressure (difference between the pressure in the fracture 

and the minimum stress). When the fracture opens, if the stress to prevent it from opening is 

greater than the minimum in-situ stress, the fracture width becomes smaller than the non-turned 

fracture. If the ratio of the stress to stop the fracture opening to the minimum in-situ stress is 

higher than 1.5, then the fracture mouth acts as a nozzle (Economides & Nolte 2000). Although 

the fluid can flow in, the pressure drop is larger due to the narrowing of the fracturing width at 

the well. This reduction in fracture width along the reorientation path restrict the fluid flow and 

may cause near-wellbore sand screen out 

s. 
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Figure 3.7 The fracture twists and turns to consistent with the preferred direction of 

propagation (Economides & Nolte 2000) 

 

The perforation design (i.e., hole size, spacing, and orientation) is very different. In fact, there 

are very few cases in which the perforation is truly consistent with the preferred fracture plane 

unless detailed work is done on the directions of the stress at a well (Economides & Nolte 

2000). Nolte (1988a) pointed out that if the fracture does not initiate at the perforations, the 

fluid must communicate with the fracture along the narrow channel at the edge of the casing. 

This will inevitably result in higher treating pressures due to the width restrictions of the 

fractures (Figure 3.8). 
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Figure 3.8 Nonalignment of perforations and the fracture plane causes pinch points 

(Economides & Nolte 2000) 

 

3.4 Formation characterization 

The in-situ stress state, especially the minimum in-situ stress is one of the most important 

parameters in hydraulic fracturing. At typical reservoir depths, the fracturing pressure (fluid 

pressure inside the fracture) is a strong function of the minimum in-situ stress (or closure stress). 

The net pressure is the most robust and usually the unique parameter that is available for 

obtaining information on fracture geometry. An error in closure stress measurement can lead 

to a significant error in the estimation of the net pressure, and consequently, the fracture 

geometry. The efficiency of a fracturing treatment is a function of wellbore inclination with 

respect to the principal stress direction and magnitude (Martins 1992a; Pearson 1992). 

In industry, well testing has been used for decades to determine essential formation properties 

and to assess wellbore conditions. There are many different types of tests that can be utilized 

to collect this information, depending on the test time, the well location, the well type, and the 

formation type. Conventional tests (e.g. flow/buildup or injection/falloff) can satisfy the most 

part of our needs. However, under certain conditions, especially in very low permeable 

formations, conventional tests are not feasible any more. Since for these formations, massive 

stimulation is required to obtain economic production. Therefore, it is extremely important to 

establish the formation pressure and permeability prior to the main stimulation. A minifrac test 
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has proved to be convenient and feasible for this purpose. 

 

3.4.1 Well and reservoir testing 

There are three major developments during the evolution period of well and reservoir testing. 

They are the semi logarithmic straight line (Horner analysis), log-log diagnostic plot and log-

based derivative (Economides & Nolte 2000). 

As the first development, Horner (1951) presented the important equation for buildup analysis 

with semi logarithmic approximation. According to this model, the shut-in pressure pws in psi 

can be calculated with the assumption of the infinite-acting radial flow. 

𝑝𝑤𝑠 = 𝑝𝑖 −
162.6𝑞𝐵𝜇

𝑘ℎ
𝑙𝑜𝑔

𝑡𝑝 + 𝛥𝑡

𝛥𝑡
 (3.4) 

where pi is the initial reservoir pressure in psi, q is the rate during the flowing period in STB/D, 

B is the formation volume factor in RB/STB, µ is the viscosity in cp, k is the permeability in 

md, h is the reservoir thickness in ft, tp is the producing (flowing) time in hr, and ∆t is the time 

since shut-in in hr. 

A semi logarithmic plot of log ([tp + ∆t]/∆t) versus pws should form a straight line (Figure 3.9) 

with the slope equal to 

𝑚 = −
162.6𝑞𝐵𝜇

𝑘ℎ
 (3.5) 

from which the unknown permeability k, or kh if h is also not known, can be determined. 

From the extension of the correct straight line to t = 1 hr, the value of the pressure p1hr can be 

extracted, and Horner suggests that the skin effect s can be calculated by 

𝑠 = 1.151 (
𝑝1ℎ𝑟 − 𝑝𝑤𝑓(𝛥𝑡=0)

𝑚
− log

𝑘

𝜙μ𝑐𝑡𝑟𝑤
2

+ 3.23) (3.6) 

The value of pwf (∆t = 0) is the last value of the bottomhole flowing pressure, m is the slope of the 

line, ϕ is the porosity (unitless), ct is the total compressibility in psi–1, rw is the wellbore radius 

in ft, and the constant 3.23 is to account for oilfield units and the conversion from ln to log. 
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The problem of the Horner semi logarithmic analysis is, several straight lines can be obtained 

(Figure 3.9). It is often difficult to identify, which one is the correct one. 

 

Figure 3.9 Analysis of pressure buildup data on a semi log plot. Arrows denote beginning and 

end of semi log linear trends (Economides & Nolte 2000) 

 

The second major development of the log-log plot resolved the problem of Horner’s analysis. 

It was proposed by H. J. Ramey for the diagnosis of the well pressure transient response. Figure 

3.10 shows the typical Log-log curve of the pressure buildup test. However, there are still 

problems with the log-log plot of pressure difference versus time. The determination of 

reservoir and well variables are dependent on the time duration for a full development of 

infinite-acting radial flow, the specific geometries and features of the reservoir. 



3 Fundamentals of hydraulic fracturing and application in Leer 

 Optimization of Multistage Hydraulic Fracturing Treatment for Maximization of the Tight Gas Productivity                                        

       - 31 - 

 

Figure 3.10 Log-log plot of pressure buildup data (Economides & Nolte 2000) 

 

The third method is based on the dimensionless pressure derivative. In this method not only, 

the pressure but also the pressure derivative is used. This method overcomes the problem of 

multiple solutions in the previous solutions, because the pressure derivative is more clear and 

definitive than the pressure itself. Figure 3.11 shows the dimensionless type curve for pressure 

drawdown and derivative. 

 

Figure 3.11 Dimensionless type curves of pressure drawdown and pressure derivative for an 

infinite-acting reservoir with wellbore storage and skin effect (Bourdet et al., 1983) 
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By comparing the measured pressure transient data with the pressure type curves discussed in 

the previous section, the flow pattern can be recognized, which can also be used to determine 

the reservoir parameters. 

There are different flow types, including radial flow, linear flow, spherical flow etc. As an 

example, the parameter determination for the radial flow is discussed. The radial flow (Figure 

3.12) is characterized by flow converging to a line at the center of a circular cylinder 

(Economides & Nolte 2000). The pressure response in the radial flow are dependent on the 

reservoir permeability, skin effect, reservoir pressure, the effective radius of the cylinder as 

well as the radial of the outer boundary. 

 

Figure 3.12 Radial flow geometries (Economides & Nolte 2000) 

 

With the help of the semi logarithmic plot of pressure versus elapsed time, the reservoir 

permeability can be determined using: 

𝑘 =
1.151𝛼𝑝𝑞𝐵𝜇

𝑚ℎ
 (3.7) 

where αp is a coefficient 141.2 in oilfield unit, m is the absolute value of the slope of a semi-

log line.  

With the method, the horizontal permeability can be determined in vertical wells (Economides 

& Nolte 2000). The horizontal permeability determined from analysis of the radial flow regime 

is the geometric mean of the maximum permeability kx oriented parallel to the principal 

permeability axis, and of the minimum permeability ky oriented perpendicular to it, as given by 

√kxky. 
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In horizontal wells, the radial flow regime about the well (Figure 3.12c) represents the 

geometric mean of the horizontal permeability kH (or √kxky) and the vertical permeability kv (or 

kz), given by √kHkv, or, more precisely, √kykz (if the well is oriented parallel to the principal 

permeability axis). In this case, the equation for the slope of the semi log line is 

√𝑘𝑦𝑘𝑧 =
1.151𝛼𝑝𝑞𝐵𝜇

𝑚𝑒𝑝𝑟𝐿𝑝
 (3.8) 

where the subscript epr of m refers to early pseudo radial, Lp is productive length in ft.  

 

3.4.2 Rock properties from well logs 

Well logging is the practice of making a detailed record (measurement versus depth or time, or 

both) of the geologic formations penetrated by a borehole. There are two types of well logs 

(Patra 2016). The first one is based on visual inspection of samples brought to the surface, 

which is named geological logs. The other one is based on physical measurements made by 

instruments lowered into the hole, which is named geophysical logs. 

To construct a simulation model of the reservoir formation and caprock, the properties of the 

rock formation layers must be obtained firstly. Each property in a layer has either a constant, 

averaged value, or has a linear distribution of the depth. These properties are either related to 

the fluid flow in the formation or related to the deformation of the formation.  

There are several types of depths used in the oil field. True vertical depth (TVD) is the depth 

measured along the vertical. If a (zero) reference point is given, it is unique. Measured depth 

(MD) is the distance measured along the wellbore trajectory. This is not unique, because it 

depends on the way it is measured. MD during drilling is measured by the length of pipe that 

has gone into the ground. MD at wireline logging time is measured by the length of cable that 

has gone into the ground. Finally, logging-while-drilling (LWD) data are logged versus time, 

which complicates the issue because several measurements can be assigned to the same depth. 

TVD is required to design the treatment placement, MD is required to compute the fluid friction 

and fluid displacement (e.g. fracture height is related to properties in TVD, not in MD). 
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The temperature of the formation is critical for the performance of both matrix stimulation 

products and hydraulic fracturing fluids. The mud temperature obtained from wireline logging 

time is typically used for the estimation of the formation temperature. 

Properties like porosity, permeability, and fluid types in the formation can also be determined 

from logs. 

 

3.4.2.1 Lithology 

The determination of minerals and fluids in the formation, especially their volumetric 

distribution, is important for the gas reservoir development. This can be achieved with 

lithological analysis. The most often used method for lithological analysis is shaliness indicator, 

which is based on gamma ray measurement. If the natural radioactivity of a formation is due 

to the clay minerals, high gamma ray values (>90 API units) indicate a shale, while low gamma 

ray values (<20 API units) indicate a clean sandstone. Values between these indicate a mixture 

of clay and sand (Economides & Nolte 2000).  

The linear equation below relates quantitatively the gamma ray count to the concentration of 

potassium oxide (K2O) in percent: 

𝐺𝑅𝐴𝑃𝐼 = 15[𝐾2𝑂] (3.9) 

There are different tools for different combinations of minerals. From each of these methods 

the tool response TR can be characterized by an equation, which can be cast in a form involving 

the volumetric fraction of n minerals and a fluid volumetric fraction Vf: 

𝑇𝑅 = 𝑓(𝑉𝑚𝑖𝑛𝑒𝑟𝑎𝑙
1 , 𝑉𝑚𝑖𝑛𝑒𝑟𝑎𝑙

2 , … , 𝑉𝑚𝑖𝑛𝑒𝑟𝑎𝑙
𝑛 , 𝑉𝑓) (3.10) 

 

3.4.2.2 Porosity determination 

Porosity is the percentage of pore volume or void space, or that volume within rock that can 

contain fluids. The porosity of formation usually varies from nearly 0% for evaporites to up to 
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40% for unconsolidated formations and even higher for chalk or diatomite. However, the 

porosity for tight gas sandstone is normally low, e.g. the average porosity of Leer tight gas 

reservoir, which was used for simulation in this dissertation, is 9.7% (Koehler 2008). 

Porosity is classically divided into two groups: primary and secondary porosity. Primary 

porosity is the original space between the grains as well as sedimentary particles formed during 

the geological deposition, while secondary porosity is the void space created by tectonic forces 

or mineral dissolution. The correlations rely mostly on the primary porosity, not the secondary 

porosity. The total porosity is the volume that is not occupied by solid rock. A part of the pore 

volume is isolated or occupied by bounded water. The other part is interconnected, so that the 

fluid can flow through this part. This part is named as effective porosity. 

In practice there are various methods for the determination of formation porosity (Economides 

& Nolte 2000). The porosity can be estimated from density, neutron, sonic, nuclear magnetic 

resonance (NMR) tools, resistivity etc. Density tools measure the electron density of a 

formation, which is extremely close to its bulk density ρb. The porosity can be determined with 

𝜙𝐷 =
𝜌𝑚𝑎 − 𝜌𝑏

𝜌𝑚𝑎 − 𝜌𝑓
 (3.11) 

where ρma is the rock matrix density determined from the lithology, ρb is the buck density of 

the rocks, ρf is the fluid density (e.g. mud filtrate) which is dependent on temperature, pressure 

and salinity. Neutron tools measure an index of how much hydrogen is present in the formation. 

A simple average of neutron porosity ϕN and density-based porosity ϕD yields a good estimate 

of the effective porosity: 

𝜙𝑒𝑓𝑓 ≅
1

2
(𝜙𝑁 + 𝜙𝐷) (3.12) 

The pore fluid has large influences on the sonic wave propagation. The porosity can also be 

determined from the elastic properties of the solid and the fluid, especially from the travel times 

of sonic waves: 

𝜙𝑠 = 𝐴
∆𝑡 − ∆𝑡𝑚𝑎

∆𝑡𝑓 − ∆𝑡𝑚𝑎
 (3.13) 
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where A is a constant and Δt denotes the measured transit time of a sonic wave in the formation. 

The transit time in the matrix ∆tma is known from the lithology. The sonic porosity ϕS is a strong 

function of the properties of the fluid in the pore space. Nuclear magnetic resonance (NMR) 

tools measure the relaxation time of protons. Extracting porosity from NMR measurements is 

complicated. However, the measured values are very close to ϕeff, and the method is very 

suitable for the porosity estimation of shale formations. Finally is the porosity measurement 

from resistivity. If the resistivity of the rock matrix is assumed to be infinite compared with 

that of the fluid, the conductivity of the formation is proportional to the porosity. The formation 

factor F is defined as 

𝐹 =
𝑅𝑜

𝑅𝑤
 (3.14) 

where Ro is the resistivity of the formation, which is fully saturated with brine of resistivity Rw. 

Archie (1942) assumed that the formation factor is related to the total porosity by the relation 

𝐹 =
𝑎

𝜙𝑚
 (3.15) 

where a and m are constants depending on the type of the formations, e.g. a = 0.62 and m = 

2.15 for clean sandstones. Therefore, if Rw is known, the total porosity can be estimated by Eqs. 

(3.14) and (3.15): 

𝜙 = [
𝑎𝑅𝑤

𝑅𝑜
]

1
𝑚⁄

 (3.16) 

This technique is not recommended, because it is greatly affected by the fluid saturation and 

conductive minerals in the matrix. 

Finally, the best estimate of porosity is obtained from a combination of logs, using synergistic 

processing that accounts for the response of each tool and is tailor-made to the geologic 

environment.  
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3.4.2.3 Saturation 

Water saturation Sw is the fraction of the pore volume occupied by water. The saturation is 

important for the estimation of the gas/oil in place and calculation of relative permeability. It 

can also be used to estimate the compressibility of the formation fluid for computing the 

compressibility-controlled leak off. 

The saturation can be calculated from the Archie’s model (Archie 1942), namely 

𝑅𝑡 =
𝑅𝑤𝐴

𝜙𝑚𝑆𝑤
𝑛

 (3.17) 

where Rt  is the true resistivity of the formation, Rw is brine of resistivity, A is a constant, m is 

the cementation index (constant), and n is the saturation exponent (constant). 

The water saturation Sw of Leer tight gas reservoir is a function of porosity and height above 

free water level (FWL). It is assumed that the water saturation and FWL has the following 

relationship 

𝑆𝑤 =
𝐶2

𝐻(FWL)𝑥
 (3.18) 

The parameter of this model can be determined by regression with measured data points. The 

final results are shown in Figure 3.13 (Koehler 2008). The average value of saturation, which 

was used in the numerical simulation in this dissertation, is 34%. 
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Figure 3.13 Porosity-classified logging data together with the field function with parameter: 

Height above FWL (Koehler 2008) 

 

3.4.2.4 Permeability 

Permeability is a measure of the ease with which fluids can flow through a formation. It is a 

tensor, and its value depends on the orientation of the flow. The permeability perpendicular to 

the bedding kV (i.e., vertical) is usually at least 1 order of magnitude lower for sandstone 

reservoirs, which, it can be more than 2 orders of magnitude lower for laminated sandstone 

reservoirs (Economides & Nolte 2000). In some carbonate reservoirs, however, kV can be equal 

to or larger than kH (Economides & Nolte 2000). 

Permeability can be estimated either by indirect or direct measurements (Economides & Nolte 

2000). Direct measurements (formation testing) provide discrete measurements of permeability. 

It can either be determined from formation tests or well tests. Indirect measurements provide a 

continuous log of permeability that must be calibrated with the direct individual measurements 

(e.g., on cores or through formation testing). 

The permeability can be determined from the following indirect measurements: 
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a. Correlation to porosity and water saturation 

b. From lithology and porosity  

c. From the Stoneley wave 

Obviously, porosity is a quantity related to permeability because permeability is derived from 

interconnected pores. Figure 3.14 listed the In-situ permeability distribution from core data of 

Leer Z and other Ostfriesland Wells. The permeability of Leer tight gas reservoir, which was 

used for simulation in this dissertation, is between 0.02 and 0.15 mD (Koehler 2008). 

 

Figure 3.14 In-situ Permeability Distribution from Core Data of Rotliegendes sandstones: Leer 

Z and other Ostfriesland Wells (Koehler 2008) 

 

When several fluids are present, it is customary to introduce relative permeability. The relative 

permeability to water krw is 

𝑘𝑟𝑤 =
𝑘𝑤

𝑘
 (3.19) 

where k is the absolute (or “total”) permeability of the formation for a single fluid, kw is the 

effective permeability of the formation to water. Similarly, the relative permeability to oil kro 
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relates the effective permeability to oil ko to the total permeability k by 

𝑘𝑟𝑜 =
𝑘𝑜

𝑘
 (3.20) 

Relative permeability typically depends on the water saturation of the formation Sw (Amyx et 

al. 1960, Figure 3.15). 

 

Figure 3.15 Typical variation of relative permeability as a function of water saturation (Dake, 

1982). Sor = residual oil saturation. 

 

Several experiments were performed by Häfner et al. 2006 to determine the capillary and two-

phase functions of Rotliegendes sandstones, which is the goal layer of later gas production in 

tight gas reservoir Leer. The material parameters (e.g. displacement threshold pressure Pd and 

exponent λ) are estimated by fitting the Corey-Burdine equation to the measured capillary 

pressure data. Based on Corey's model, a modified form in terms of Corey-Brooks (1966) and 

Corey-Burdine (Corey 1954, Burdine 1953) correlations for the gas-water relative permeability 

and capillary pressure functions are represented as follows: 

𝑘𝑟𝑔 = 𝑎(1 − 𝑆𝑔𝑐 − 𝑆𝑤)
2

[1 − 𝑏(𝑆𝑤 − 𝑆𝑤𝑖)
2
𝜆

+1] (3.21) 
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𝑘𝑟𝑤 = 𝑐(𝑆𝑤 − 𝑆𝑤𝑖)
2
𝜆

+3
 (3.22) 

𝑝𝑐 = 𝑑(𝑆𝑤 − 𝑆𝑤𝑖)
−

1
𝜆 (3.23) 

where  

𝑎 = 𝑘𝑟𝑔(𝑆𝑤𝑖) ∙ (1 − 𝑆𝑤𝑖 − 𝑆𝑔𝑐)
−2

 

𝑏 = (1 − 𝑆𝑤𝑖 − 𝑆𝑔𝑐)
−(

2
𝜆

+1)
 

𝑐 = 𝑘𝑟𝑤(𝑆𝑔𝑐) ∙ (1 − 𝑆𝑤𝑖 − 𝑆𝑔𝑐)
−(

2
𝜆

+3)
 

𝑑 = 𝑝𝑑 ∙ (1 − 𝑆𝑤𝑖 − 𝑆𝑔𝑐)
1
𝜆 

The Figure 3.16 shows the set of capillary pressure functions of the Rotliegendes sandstones 

subdivided onto five porosity classes used as calculation basis. The parameters like Swi, Sgc, Pd 

necessary for further calculations can not be directly measured by the mercury injection method 

and must be estimated from the measured mercury-pc-functions with reference to the known 

correlations and regression functions. The irreducible water saturations are estimated for the 

capillary pressure level of pc=3MPa by truncation of the capillary pressure functions at this 

pressure level. The estimated values, which are used for the later case study of tight gas 

borehole Leer Z4 are shown in the 4-th column of the Table 3.1.       

 

Figure 3.16 Mercury injection capillary pressure functions of different porosity class 
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Rotliegendes sandstones measured at lab-conditions (Häfner et al. 2006) 

The estimated critical gas saturations and the corresponding threshold pressures are shown in 

the table 7.7 (coloums 5 and 9).  

Table 3.1 lab-conditions material parameter of the geo-model for the case study (Häfner et al. 

2006) 

Porosity 

class 

ka, 

μD 

kw, 

μD 

Swi Sgc krg(Swi) krw(Sgc) pd, 

MPa 

Pth, 

MPa 

lambda 

1 2 3 4 5 6 7 8 9 10 

φ>0.11 750 681 0.272 0.035 0.442 0.706 0.093 0.058 0.794 

0.09< φ

<0.11 

180 103 0.348 0.020 0.313 0.476 0.216 0.107 0.781 

0.07< φ

<0.09 

58 24 0.415 0.025 0.215 0.314 0.263 0.173 0.794 

0.05< φ

<0.07 

22 6.3 0.516 0.042 0.099 0.186 0.338 0.264 0.763 

φ<0.05 1.3 0.16 0.623 0.100 0.022 0.019 0.797 0.876 0.775 

 

The specific water permebility in the column 3 of the Table 3.1 is calculated by Jones and 

Owens correlation (Eq. (3.24).  

𝑘𝑤 = 𝑘𝑎
1.32 [mD] (3.24) 

Where the absolute permeability ka is introduced in [mD]. 

The end-point relative gas permeabilities krg(Swi) (table (3.1), column 6) is calculated by using 

the following formula (Eq. (3.25).   

𝑘𝑟𝑔(𝑆𝑤𝑖) = (1 −
𝑆𝑤𝑖

0.7⁄ )
1.5

(1 − 𝑆𝑤𝑖
2 ) (3.25) 

The endpoint relative water permeabilities krw(Sgc) (Table 3.1, column 7) are calculated by 

using a form of Corey equation (Eq. (3.26)): 
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𝑘𝑟𝑤(𝑆𝑔𝑐) = (
1 − 𝛿 ∙ 𝑆𝑔𝑐 − 𝑆𝑤𝑖

1 − 𝑆𝑤𝑖
)

4

(
𝑘𝑤100

𝑘𝑎
) (3.26) 

where δ is a fitting parameter, ka and kw represent absolute permeability and specific water 

permeability. 

The material parameters displacement threshold pressure pd and exponent λ are estimated by 

fitting the Corey-Burdine equation to the measured capillary pressure data. They for each 

porosity class are showen in column 8 and 10 of the Table 3.1.    

 

The gas-brine relative permeability and capillary pressure functions of water permeability can 

be calculated by Eqs. (3.21) to (3.23). These parameter groups used in calculations are 

summarized in Table 3.2.   

Table 3.2 Parameter of the relative permeability capillary pressure correlation formulas for 

laboratory conditions 

Porosity class a b c d MPa 

φ> 0.11 0.921 3.64 5.35 0.059 

0.09 <φ< 0.11 0.784 5.12 6.09 0.120 

0.07 <φ< 0.09 0.686 7.70 7.71 0.127 

0.05<φ<0.07 0.506 19.2 18.31 0.116 

φ<0.05 0.292 98.7 24.15 0.152 

 

The Figure 3.17 shows the estimated relative permeability functions at laboratory stress 

conditions. 
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Figure 3.17 Lab-conditions gas-brine relative permeability functions of the different porosity 

class Rotliegendes sandstones correlated from mercury injection capillary pressure functions 

(Häfner et al. 2006) 

 

3.4.2.5 Mechanical properties 

The mechanical properties of the formation rock and the stress have large influences on the 

hydraulic fracturing geometry. The mechanical properties determined the stress change and the 

deformation in formations. They are not independent of each other. 

The elastic properties of the formation can be determined with sonic logs (Economides & Nolte 

2000). When a pressure pulse is generated in a wellbore, different types of wave will be 

generated in the rock formations. The two important waves for the determination of the elastic 

parameters of the medium are compressional waves (P-waves) and shear waves (S-waves). The 

sonic tool measures the characteristic propagation speed of P- and S-waves. 

For isotropic media, there are only two independent elastic constants. The shear modulus G 

and Poisson's ratio v are related to the propagation speeds of the P and S waves up and us.  

𝐺 = 𝜌𝑏𝑢𝑠
2 (3.27) 
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𝑣 =
2𝑢𝑠

2 − 𝑢𝑝
2

2(𝑢𝑠
2 − 𝑢𝑝

2)
 (3.28) 

where ρb is the density of the formation. 

The Young's modulus E is related to the above two constants as follows: 

𝐸 = 2𝐺(1 + 𝑣) (3.29) 

In numerical simulations, statically derived material properties (Young’s modulus and 

Poisson's ratio) are representative of fracturing conditions, while dynamic properties are less 

expensive and easy to obtain. Therefore, before running numerical studies, the measured 

dynamic properties must be converted to static properties. In this study, the difference between 

dynamic and static Poisson's ratio is ignored because it is usually small for all practical 

purposes. The relationship between dynamic and static modules is usually in the form of a 

linear or exponential relationship. Many studies were performed on different locations and rock 

types to describe this relationship (Morales & Marcinew 1993, Lacy 1997, Bradford et al. 1998, 

Wang 2000, Mockovciakova & Pandula 2003). The dynamic Young’s modulus, which was used 

for simulation of tight gas well Leer Z4 in this dissertation is converted to static Young’s 

modulus in terms of HB curves (for porosity interval 0 - 14%) from Morales & Marcinew 1993. 

𝐸𝑠 = 𝐸𝑑 ∙ 𝑒𝑥𝑝(0.2317 − 0.3352𝑙𝑛𝐸𝑑) (3.30) 
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Figure 3.18 Correlation between dynamic Young’s modulus (Ed) and ratio of static/dynamic 

Young’s modulus (Es /Ed) test data on sandstones cores (Koehler 2005) 

 

3.4.3 Reservoir properties from well logs 

3.4.3.1 Pore pressure 

The pore pressure is the pressure of the fluid in the formation. The pore pressure has great 

influences on the hydraulic fracturing treatments as well as the production. It is also strongly 

related to the stress state of the formation. 

The pore pressure of the formation can be measured either by well tests or obtained through 

the formation tester. During the measurement the formation tester and the formation will be 

sealed. Then the fluid is pumped from the formation so that the pressure in the formation tester 

is lower than the far field pore pressure. The formation fluid will flow under the pressure 

difference, until make the pressure in the tester reach equilibrium with the formation. The fluid 

pressure at the time of equilibrium serves as the approximate pore pressure. 

The above-mentioned method is only a point-wise measurement. Various pressure test will be 

carried out, to generate a pore pressure profile with depth. The formation pore pressure usually 
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follows a hydrostatic pressure distribution, when there is no fluid flow under the effect of 

gravity, namely 

𝑑𝑝

𝑑𝑧𝑇𝑉𝐷
= 𝜌𝑓𝑔 (3.31) 

In an unproduced reservoir, there may be different fluid components, including gas, oil and 

water. If the depth-dependent pore pressure is plotted in a figure, there are various line segments 

with a slope given by the density of the fluid in the formation. The slope will change depending 

on the fluid, which enables the determination of fluid contacts (Figure 3.19). 

 

Figure 3.19 Depth-dependent pressure profile with fluid types and fluid contact (Economides 

& Nolte 2000) 

 

3.4.3.2 Reservoir temperature 

Formation temperature has large influences on the performance of both matrix stimulation 

products and hydraulic fracturing fluids. Like the pore pressure distribution, a temperature 

profile should be obtained. The wireline logging is the only test method that can obtain a 
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continuous well temperature curve (Economides & Nolte 2000). 

The discrete point temperature test can be obtained by sampling the fluid in the formation 

testers. The temperature of the fluid sample is continuously monitored during the sampling 

process. It is currently the most accurate temperature measurement method. Another good 

method for estimating reservoir temperature is when the formation fluid is just beginning to 

flow after the perforation in the formation. The temperature at the bottom of the well is recorded 

by a slickline-conveyed gauge. 

Since the hydraulic fracturing treatment are performed in deep underground, they cannot be 

seen and measured directly. In Cipolla & Wright (2000) various research methods (e.g. 

microseismic fracture mapping, surface and downhole tilt fracture mapping, temperature 

logging, borehole image logging, net pressure analysis, well testing, production analysis etc.) 

are introduced to overcome this problem. Among them only through microseismic fracture 

mapping, surface and downhole tilt fracture mapping methods can direct obtain approximate 

fracture geometry. In addition, temperature logs to estimate fracture height have been firstly 

discussed by Agnew 1966. It locates cold anomalies that indicates the location of the cold 

fracture fluid injection and warm anomalies that indicates warm-back after shut-in (Figure 

3.20). 
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Figure 3.20 An ideal temperature log (Davis et al. 1997) 

 

3.4.3.3 In-situ stress state 

The shape of hydraulic fractures is strongly dependent on the stress state in the earth. The stress 

is a tensor, and it can be described by three principal stresses, namely maximum principal stress 

σ1, intermediate principal stress σ2 and minimum principal stress σ3, and their mutually 

perpendicular directions. Because the three principal stresses are orthogonal, the two principal 

stress directions can fully describe them. The complete description of the stress state is very 

important, because the hydraulic fracture propagates along the direction perpendicular to the 

minimum principal stress. If σ3 is in the horizontal direction, the hydraulic fracture should be 

vertical; if σ3 is in the vertical direction, it will produce a horizontal fracture; if σ3 is in an 

inclined direction, the resulting hydraulic fracture is perpendicular to the slope. 

In the hydraulic fracturing engineering application, the recommended method of measuring 

stress is as follows: First, assuming that it is far from a major fault, the in-situ stress 

measurement method is used for a reservoir with a depth of more than 610 m, because in this 

case, the overburden is one of the three principal stresses (Economides & Nolte 2000). 
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• Firstly, determine the value of σv  

• Secondly, determine the direction of σh 

• Finally, the relationship between the minimum stress value and the depth is determined 

and compared with overburden to determine which stress is σ3. 

These three steps are introduced in detail below. 

The overburden is the weight of the column of overlying rocks. Although it cannot be directly 

measured, the integral along the depth of the bulk density can be easily calculated as follows, 

which is analogous to the determination of pore pressure under hydrostatic conditions: 

𝜎𝑣(𝑧𝑇𝑉𝐷) = ∫ 𝜌𝑏𝑑𝑧

𝑧𝑇𝑉𝐷

0

 (3.32) 

The orientation of the principal stress can be obtained by different methods. The commonly 

used methods (Economides & Nolte 2000) are: World Stress Map, geologic maps, shear 

anisotropy, wellbore breakouts, drilling-induced fractures, tests on cores, population of natural 

fractures, hydraulic fracture diagnostics. 

The minimum principal stress can only be measured indirectly, discontinuously. The laboratory 

analysis of the core can obtain the ratio of effective stresses acting on the formation during 

coring by measuring the strain. Micro-hydraulic fracturing technique (Haimson 1993) can be 

used for open- or cased holes. Closure pressure (or sometimes ISIP) obtained from a hydraulic 

fracturing calibration treatment can also estimate the minimum principal stress acting on the 

formation. 

It is not easy to accurately estimate intermediate stress. It is normally determined in 

combination of the minimum principal stress, e.g. using the breakdown pressure to calculate 

intermediate pressure (Hubbert & Willis 1957). However, with the recent research on the 

breakdown process (Detournay & Carbonell 1994), it has been found that estimating the 

intermediate stress from the breakdown pressure is not reliable, so it should not be used for the 

stress analysis. 

Due to the relationship of vertical and horizontal stresses, different stress regimes can be 

defined (Engelder 1993). Five in-situ stress states can be determined based on the principal 
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stresses (e.g. normal fault regime, thrust fault regime, strike-slip fault regime etc., Figure 3.21). 

The first one is lithostatic stress state, in which the three principal stresses are equal (i.e.), e.g. 

poorly consolidated shales, salt, extremely overpressured sediments. The second case is that 

the two horizontal principal stresses are equal and less than the overlying stress. In other stress 

regimes, the three principal stress values vary more or less, and in-situ stress measurements 

and borehole image analysis results indicate that this is the most common case. The difference 

in horizontal stresses may be due to the presence of tectonic stresses or certain geological 

phenomena such as folds and faults. 
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Figure 3.21 Stress regimes with spatial distribution of stresses (σo= equal-stress constant) 

(Economides & Nolte 2000) 
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There are also mathematical stress models for the continuous description of the horizontal 

stress of the target layer as a function of depth. These models consider not only the single 

measurement, but also the elastic or poro-elastic effects. Thus, the term "fracture-closure 

pressure" is synonymous with minimum horizontal stress. The continuous profile of σh or 

σclosure can be obtained by the following equation (Leshchyshyn 2004), where the biot 

coefficient α is used as a correction factor related to lithology: 

𝜎𝑡𝑜𝑡𝑎𝑙 = (
𝑣

1 − 𝑣
) ∙ (𝑃𝑧 − 𝛼𝑣 ∙ 𝑃𝑝) + 𝛼ℎ ∙ 𝑃𝑝 + 𝜎𝑡 + 𝜀𝑡 ∙ 𝐸 (3.33) 

where σh is total fracture closure stress, υ is Poisson’s ratio (from DSI-Log), Pz is lithostatic 

pressure (overburden pressure), αv is vertical Biot coefficient, Pp is pore pressure, αh is 

horizontal Biot coefficient, σt is tectonic stress, εt is tectonic strain, E is Young’s Modulus. This 

model is suitable for sandstone, shale und carbonate with low porosity and permeability. 

The In-situ stress conditions of well Leer Z are estimated and the results are comparable with 

that in Northern Germany from World Stress Map (Figure 3.22, Heidbach et al. 2016). The 

measured orientations of maximum in-situ horizontal stresses at the Leer site match with the 

regional trend in Northeast Germany. 
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Figure 3.22 Comparison of the stress orientation of Leer Z with that in Northern Germany from 

world stress map (Heidbach et al. 2016) 

 

Orientation of a horizontal well in direction of the minimum stress to create transverse multiple 

fractures parallel to the maximum stress orientation. The preferred hydraulic fracture 

propagation (PFP) in the case of Leer is an azimuth 166 °, it is approximately an NNW-SSE 

direction.  

To estimate this maximum stress for the optimization of direction of horizontal drilling re-

oriented cores investigations and wellbore breakouts were performed (Figure 3.23). Wellbore 

breakouts are stress-induced enlargements of the wellbore cross-section (Bell and Gough 1979). 

When drilling, the material removed from the subsurface no longer supports the surrounding 

rock. As a result, stress is concentrated in the surrounding rock (i.e., the wellbore wall). 

Borehole breakout occurs when the stress around the borehole exceeds the stress required to 

cause collapse of the borehole wall (Zoback et al. 1985; Bell 1990). Further investigations 

carried out in the framework of the DGMK study 593-5 have confirmed this main direction of 
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stress (Müller et al. 2004). Thus, in-situ stress determines the direction of the hydraulic 

fractures and affects the final fracture geometries.  

 

Figure 3.23 Stress Direction - Borehole Studies: re-oriented cores investigations and wellbore 

breakouts (Koehler 2005) 

 

3.4.4 Minifrac test 

A minifrac test is an injection/falloff diagnostic test performed without proppant before a main 

fracture stimulation treatment (Soliman et al. 2005). The intent is to break down the formation 

and create a fracture with a small volume of high-pressured fluids at a defined rate. Injection 

rate, pressure and falloff pressure are recorded for analysis.  

The Minifrac test type supports pre-closure analysis, after-closure analysis, modeling, and step-

down test analysis. Pre-closure analysis is used to determine instantaneous shut-in pressure 

(ISIP), fracture closure pressure (Pc) and time (tc), fracture gradient (ISIP/TVD), net pressure 

(Pnet), and fluid efficiency (η). Post-closure analysis is used to identify reservoir properties, 

such as reservoir pressure, transmissibility, and permeability. 

To perform a minifrac test in an openhole, the selected test interval is isolated from the 

surrounding well using a packer arrangement (Figure 3.24). 
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Figure 3.24 Wireline stress tool (Economides & Nolte 2000) 

 

Fracturing fluid is then injected in the interval at a defined constant flow rate. During the 

injection, the wellbore is pressurized up to the initiation of a tensile fracture. Initiation of the 

fracture is usually recognized by a breakdown on the pressure versus time record, which is 

named breakdown pressure (Figure 3.25). However, sometimes breakdown pressure does not 

show while initiation occurs prior to breakdown. After breakdown, injection is continued until 

the pressure stabilizes. After shut-in, the pressure begins to decay. The fracturing fluid is 

usually a low-viscosity (non-gelled) fluid for low-permeable zones or a drilling mud for zones 
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with higher ranges of permeability. The amount and injection rate of the fluid is usually 

determined to achieve the pre-designed fracture size. Usually it is injected with less than 100-

gal fluid at a flow rate from 0.25 to 25 gal/min (Economides & Nolte 2000). 

 

Figure 3.25 Typical pressure behavior of Minifrac Tests (modified from Fekete Associates Inc. 

2012) 

 

Usually several injection/fall-off cycles are performed until repeatable results are obtained 

(Evans et al. 1989, Figure 3.26). Using downhole shut-off devices, downhole pumps and 

downhole pressure gauges can make the most accurate measurement. A downhole shut-off tool 

and downhole pumps have the advantage of minimizing wellbore storage during pumping and 

shut-in (Thiercelin et al. 1993). 
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Figure 3.26 Pressure and injection rate record obtained into a sand and immediately 

underlying shale (Evans et al. 1989) 

 

The minimum principal stress can be estimated using different techniques. The simplest one is 

to take the instantaneous shut-in pressure (ISIP) as an approximate minimum principal stress. 

However, when this method is used, errors of several hundred psi or more may occur, especially 

for areas that can generate very high net pressure or porous formations. Recently, the technique 

of determining the closure pressure has replaced the method of determining the minimum 

principal stress by the ISIP. Conceptually speaking, the closure pressure is the pressure at which 

the fracture surface is regular and the fracture can be completely closed.  

The pressure behavior during the pre-closure period is fracture dominated. The pressure 

behavior during the after-closure period is reservoir dominated. During the after-closure period, 

if we can monitor falloff data for a few weeks we can also see reservoir dominated flow 

(linear/radial flow, Figure 3.27) for these tests. Linear flow regimes occur before radial flow, 

and their duration is dependent on the fracture half-length, or the productive length in the case 

of a horizontal well.  
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Figure 3.27 Typical flow regimes (Fekete Associates Inc. 2012) 

 

In permeable formations, where the fracturing fluid leaks off from the fracture face, closure 

pressure is concluded when the pressure decline deviates from a linear dependence on the 

square root of shut-in time or the square root of the sum of shut-in time and injection time ti 

(Nolte 1982 & 1988a, Figure 3.28). 

 

Figure 3.28 Pressure decline analysis (Nolte 1982 & 1988a) 

 

An improved representation of fluid loss is provided using G-plot, which is introduced by 
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Castillo (1987) for closure inference along with specialized functions for the pressure. 

Additional examples of the G-plot based method are given by Shlyapobersky et al. (1988b). 

Although the G-plot provides a firmer foundation than the square-root plot, its derivation does 

not consider the well-established additional fracture extension and decay after shut-in 

(Economides & Nolte 2000).  

To overcome the ambiguity of decline analysis, the pump-in/flowback (PI/FB) test was 

developed by Nolte (1979) to estimate the closure pressure before fracturing treatments. The 

test begins by injecting a volume of fluid (about 10 to 100 bbl) into the formation to create a 

fracture. Following pump-in, injected fluid is withdrawn from the fracture by flowing back 

with a constant rate. It is usually between one-sixth and one-quarter of the injection rate 

(Economides & Nolte 2000). Otherwise, accurate results cannot be obtained (Figure 3.29a). 

Finally, when the flow back ends, that means when the well is shut-in and surface flowback 

stops, a period of pressure rebound is observed. The initial interpretation assumed that closure 

occurred at the inflection point above the intersection point (Figure 3.29b). Then, 

Shlyapobersky et al. (1988b) suggested that closure occurred at begin of the linear response, 

which is below the intersection point (Figure 3.29b). Their theory is based on linear response 

corresponds to wellbore storage only (i.e., when the fracture is closed). This was precisely the 

case for low fluid loss and an ideal frictionless fluid (Figure 3.29b). In low-permeability 

formations, the pressure rebound tends toward the closure pressure (Thiercelin et al. 1994). 

The pump-in/flowback (PI/FB) test has two advantages over the pump-in/shut-in test. Firstly, 

flow back accelerates fracture closure, which is especially beneficial for the low-permeability 

formation. Secondly, pressure rebound period develops an easier distinct signature for fracture 

closure rather than pump-in/shut-in test (Plahn et al. 1997). 

During pressure rebound period, the fluid in the fracture flows into the well until equalization 

between the well pressure and the pressure within the fracture occurs. Nolte (1982) suggested 

that the maximum pressure value of the rebound was a lower bound for the closure pressure 

(i.e., the pressure equilibrated into the closed but conductive fracture). 
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Figure 3.29 Flowback and pressure rebound: (a) influence of flowback rate on pressure 

response (Nolte 1982 & 1988a) and (b) recommended approach for closure pressure estimation 

(Plahn et al. 1997). 

 

Not only the fracture closure pressure, but also other information (Fekete Associates Inc. 2012) 

can be yielded from analysis of pressure falloff data. For example, 

▪ Instantaneous shut-in pressure (ISIP)  

ISIP = Final Flow Pressure - Final Flow Friction (3.34) 

Final Flow Friction is the friction component of the bottomhole pressure calculation. 

▪ Fracture gradient 

Fracture Gradient = ISIP / Formation Depth (3.35) 

▪ Net Fracture Pressure (Δpnet) 

Net fracture pressure is the pressure in the fracture minus the in-situ stress. It is required 

to keep the fracture open. It is an indication of the energy available to propagate the 

fracture. 

Δpnet = ISIP - Closure Pressure (3.36) 

▪ Fluid efficiency 

Fluid efficiency is the ratio of the stored fluid volume within the fracture to the total 
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injected fluid volume. A high fluid efficiency means low leak-off and indicates the 

energy of injected fluid was efficiently utilized in creating and propagating the fracture. 

Unfortunately, low leak off is also an indication of low permeability formation. For 

minifrac after-closure analysis, high fluid efficiency is coupled with long closure 

durations and even longer identifiable flow regime trends. 

Fluid efficiency = 
𝐺𝑐

2+𝐺𝑐
 (3.37) 

Where Gc is the G-function time at fracture closure 

▪ Formation leak off characteristics and fluid loss coefficients 

▪ Formation permeability (k) 

▪ Reservoir pressure (pi) 

In this dissertation, the well Leer Z4 for tight gas production was studied. Taking its frac-stage 

1 as an example, the fracture specific data was estimated by performing a formation breakdown 

with a 1st datafrac, a minifrac and a 2nd datafrac (Koehler & Kerekes 2006, Figure 3.30). At the 

beginning, a datafrac contained a Formation Breakdown and a following Step Rate Down Test 

1 (SRDT 1) and shut-in to examine the near wellbore friction (perforation friction and tortuosity 

friction) and the fracture closure pressures. After that, a minifrac with cross-linked Sirocco gels 

and proppant slugs (concentration: 1-3 ppg) was performed to calculate the fluid loss and fluid 

efficiency. It was also used to verify the expected fracture propagation, to investigate the 

fracture response on proppant slugs and to check the erosion effect by low concentrated 

proppant slugs. Then a 2nd datafrac with a Step Rate Down Test 2 (SRDT 2) was performed to 

especially examine the alterations in the near wellbore frictions after the minifrac. 
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Figure 3.30 A 1st datafrac, a minifrac and a 2nd datafrac for fracture specific data estimation 

of frac-stage 1 (modified from Koehler 2005) 

 

According to the recommended approach of Plahn et al. (1997) three injection/fall-off cycles 

are performed until repeatable results are obtained (Evans et al. 1989). According to 3rd falloff 

pressure the closure pressure is equal to 630 bar (Figure 3.31).  

 

Figure 3.31 ISIP and closure pressure estimation of frac-stage 1 (Koehler 2005)  
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3.5 Fracture conductivity lab testing 

As mentioned before, during the hydraulic fracturing process once a fracture is created 

proppants are injected with fluids downhole to fill in and prop the fracture. One of the indicator 

of a successful fracture is a large fracture conductivity value. Fracture conductivity is the 

permeability of the propped fracture region multiplied by the width of the generated fracture 

(Blair 2015). The propped generated fracture has a much higher permeability than the 

surrounding formation. It acts as a high permeability channel for fluids to flow through so that 

the well production can be improved. 

Fracture conductivity lab testing, which developed by API standards 61 (1981) and 19D (2008) 

is a measure of how proppant will perform downhole when injected. A Cooke cell (Figure 3.32) 

has a top and bottom piston that applies stresses to simulate formation stress experienced by 

proppants. Between the pistons and proppant pack are sandstone platens which simulate 

formation rock. The pistons must apply stress at a rate of 100 psi/min ± 5 psi/min until the cell 

has reached a 2000 psi increment. Between the platens, proppant is spread out evenly then 

compressed.  

The equation, in SI units used to calculate proppant pack permeability is outlined in API RP-

19D (2008). 

𝑘𝑓 =
𝜇𝑄𝐿

100𝐴(𝛥𝑃)
 (3.38) 

where kf is the proppant pack permeability in darcy 

µ is the viscosity of the test liquid at room temperature in cp 

Q is the flow rate in cm3/s 

L is the length between pressure ports in cm 

A is the cross-sectional area in cm2 

ΔP is the pressure drop (Pupstream - Pdownstream) in kPa 

To calculate the conductivity, pack width must be measured using a digital caliper at each stress. 

The conductivity equation in SI units defined in API RP-19D (2008) is shown below. 
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𝑘𝑓𝑤𝑓 =
μ𝑄𝐿

100𝑤(∆𝑃)
 (3.39) 

Where wf is the pack thickness in cm 

w is the width of the cell in cm 

A long fracture half-length (xf) with sufficient fracture conductivity is essential. This could be 

further explained by the so-called dimensionless fracture conductivity (FCD). The 

dimensionless fracture conductivity, the fracture conductivity in respect to the conductivity 

capacity of the reservoir defined by Prats (1961) as 

𝐹𝐶𝐷 =
𝑘𝑓 · 𝑤𝑓

𝑘 · 𝑥𝑓
 (3.40) 

Where k is reservoir permeability in darcy 

xf is the fracture half-length in m  

To maintain conductivity under increasing load, proppant must be able to withstand the closure 

stress at the concentration level that it is present in the fracture. The most important 

characteristics for proppant selection are strength and bulk density, which is based on the stress 

and conductivity requirements. The measurement of proppant strength is performed by crush 

test. The results of these tests govern the selection of the proppant for a giving fracturing job. 

The standard procedure is based on concentration of 4lb/ft2 and determination of percent 

crushed proppant under a specific load (Simo et al. 2013).  

Current crush test procedures are defined and standardized in ISO 130503-2. Highlights of the 

procedures are as follows (Palisch et al. 2009): 

➢ Proppant is pre-sieved to remove particles outside of stated mesh range.  

➢ Dry proppant placed in steel cell at ~4 lb/ft2 (sand equivalent) 

➢ Room temperature 

➢ Proppant evenly distributed with level surface 

➢ Load applied at uniform rate 

➢ Constant stress maintained for two minutes 

➢ Proppant is sieved. The weight percent which falls below the primary screen is reported. 
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- For 16/20 proppant all material < 20 mesh is reported as “fines” 

- For 30/50 proppant all material < 50 mesh is reported as “fines” 

   

Figure 3.32 Conductivity cell stack, from API RP-19D (2008) 
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4 Modeling of hydraulic fracturing 

The first hydraulic fracturing experiment was conducted in 1947 at the Hugoton gas field in 

Grant County of southwestern Kansas by Stanolind (Charlez 1997, Montgomery & Smith 

2010). The first commercially successful application followed in 1950. In the Soviet Union, 

the first hydraulic proppant fracturing was carried out in 1952. As of 2012, 2.5 million "frac 

jobs" had been performed worldwide in oil and gas wells; over one million of those within the 

U.S. (King 2012, Staff 2013). To design and analyze the hydraulic fracturing, which is one of 

the most frequently used stimulation technique, it is necessary to build mathematical models 

that can describe it. Hydraulic fracture simulation process presents a complex problem, in 

which the physical processes involved such as mechanical rock matrix deformation induced by 

pressure change in fractures and pores; fluid flow within fracture and formation, including their 

interactions; fracture propagation; proppant transport and settling inside the fracture. These 

responses are coupled and depend on each other. 

Different models were developed in the history. They can be divided into physical, empirical, 

analytical and numerical models (Economides & Nolte 2000). The physical models are real 

models (normally with reduced size) and reflect the physical processes. Since such models are 

related to experiments, it is usually expensive and time consuming. Empirical models are often 

less expensive and can be generated from observations. Their disadvantage lies on the 

prediction accuracy for unobserved conditions. The analytical solution is based on 

mathematical models in the form of equations which captures the main mechanisms of the 

physical process. Such models are more complicated than the empirical model, but the 

prediction may be better. However, due to the complexity, some of such equations are not easy 

to solve. Sometimes this can only be achieved with semi-analytical or numerical methods. 

Another feature of analytical models is that they often assume simple geometry and ideal 

distribution of material properties. They can only partially or even not be used to solve 

complicated real industry problem. However, they can be used to evaluate and verify other 

models. The numerical model is based on partial differential equations (PDE), but such 
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equations can be solved with the help of numerical methods. The big advantage is that complex 

geometry and material property distribution can be simulated, which makes it possible to solve 

complicated real industry problems. 

 

4.1 Historical development of hydraulic fracture modeling 

From 1950s the first theoretical models of hydraulic fracturing were introduced and then 

gradually developed, e.g. PKN and KGD 2D models, lumped and cell-based pseudo 3D models 

as well as planar 3D model. They were solved by analytical, semi-analytical or fully numerical 

methods respectively. 

 

4.1.1 Modelling of penny-shaped fractures 

Sneddon and Elliot (1946) developed an analytical plane strain model to describe the stress 

state around the fracture and the fluid pressure in the fracture. They have mathematically 

formulated that Eq. (4.1) can describe the fracture width profile of a penny-shaped (radial and 

axially symmetric) fracture (Figure 4.1) with a fracture radius of R. The radial model is 

applicable in homogeneous reservoir conditions where the injection region is practically a point 

source. 

𝑤(𝑟) =
8𝑃𝑛𝑒𝑡𝑅(1 − 𝑣2)

𝜋𝐸
√1 −

𝑟2

𝑅2
 (4.1) 

Where R is fracture length in radial direction [m], r is radial coordinate [m], E is Young’s 

modulus [Pa], v is Poisson ratio [-], which described an ellipsoid, and the volume of the crack 

V by, 

𝑣 =
16(1 − 𝑣2)𝑅3

3𝐸
𝑝𝑛𝑒𝑡 (4.2) 

Net pressure Pnet is defined as the difference between the fluid pressure in the fracture and the 

pressure against the propagation of the fracture (Fracture closure pressure σc) and in Eq. (4.3) 
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formulated.  

𝑝𝑛𝑒𝑡 = 𝑝𝑓 − 𝜎𝑐 (4.3) 

In ideal case, the fracture closure pressure σc can be approximately as minimum principal in-

situ stress σh. However, in fact, both are different, especially in the fracture front. There, the 

stresses are redistributed by fracture propagation because of the fluid overpressure and fluid 

lag effect. 

 

Figure 4.1 Schematic representation of a penny-shaped fracture (Hu & Garagash 2010) 

 

The opening of a propped transverse fracture in horizontal well leads to the reorientation of in-

situ stress in its neighborhood, which in turn affects the propagation of subsequent main 

fractures and stress-relief fractures, the so-called stress shadowing (Roussel & Sharma 2011, 

Taghichian et al. 2014). Sneddon and Elliott (1946) proposed an analytical model to solve stress 

interference caused by hydraulic fracturing. The components of stress by single propped 

fracture are described as follows: 

1

2
(∆𝜎𝑥 + ∆𝜎𝑦) = 𝑝𝑛𝑒𝑡 {

𝑟

√𝑟1𝑟2

cos (𝜃 −
1

2
𝜃1 −

1

2
𝜃2) − 1} (4.4) 

1

2
(∆𝜎𝑦 − ∆𝜎𝑥) = 𝑝𝑛𝑒𝑡

𝑟 sin(𝜃)

𝑐
(

𝑐2

𝑟1𝑟2
)

3/2

sin
3

2
(𝜃1 + 𝜃2) (4.5) 
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∆𝜏𝑥𝑦 = 𝑝𝑛𝑒𝑡

𝑟 sin(𝜃)

𝑐
(

𝑐2

𝑟1𝑟2
)

3/2

cos
3

2
(𝜃1 + 𝜃2) (4.6) 

where c is the fracture half-length, pnet is the net pressure in the fracture and the other symbols 

are explained in Figure 4.2. 

 

Figure 4.2 Schematic representation of a 2D fracture parameters in Eqs. (4.4) to (4.6) (Liu et 

al. 2015) 

 

4.1.2 2D model 

Some papers published between 1950s and 1970s that developed the foundation of hydraulic 

fracturing modeling. Two basic models, namely KGD model according to its developers 

Khristianovich, Zheltov, Geertsma, de Klerk and PKN model developed by Perkins, Kern and 

Nordgren were developed during this period. KGD and PKN models are 2D plane strain models 

in which a 3D solid and fracture mechanics problem is converted into a 2D problem. They have 

taken not only the solid mechanics, but also volume balance into account. In this section, these 

two models are specifically discussed. 
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4.1.2.1 PKN model 

 

Figure 4.3 Schematic representation of a PKN fracture (Economides & Nolte 2000) 

 

Figure 4.3 shows a PKN fracture. In the PKN model (Perkins and Kern 1961), it is assumed 

that each vertical cross-section is elliptical and has a limited height hf. This is true if the fracture 

half-length is much larger than the fracture height (L >> hf). The fluid flow in the fracture is 

assumed to be 1D Newtonian flow, which can be described as follows. 

𝑑𝑝

𝑑𝑥
= −

64𝑞𝑢

𝜋ℎ𝑓𝑤3
 (4.7) 

where p is the pressure, x is the distance along the fracture, and µ is the fluid viscosity. For 

the fracture with fixed height, the fracture width and net pressure can be described as (Sneddon 

and Elliot 1946) 

𝑤 =
2𝑝𝑛𝑒𝑡ℎ𝑓(1 − 𝑣2)

𝐸
 (4.8) 
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and because the shape of the fracture is elliptical, so that the average width 𝑤̅ = (𝜋
4⁄ )𝑤. 

Combing the above two equations, replacing q = qi/2 and neglecting the leak off and 

compressibility of the fluid, the following equations can be obtained 

𝑝𝑛𝑒𝑡
3 𝑑𝑝𝑛𝑒𝑡 = −

4

𝜋

μ𝑞𝑖𝐸
′3

ℎ𝑓
4 𝑑𝑥 (4.9) 

where 𝐸′ =
𝐸

1−𝑣2
 is the plane strain modulus. 

By integrating Eq. (4.9) along the fracture half-length L and pnet = 0 at the fracture tip, the net 

pressure can be described as 

𝑝𝑛𝑒𝑡 = [
16μ𝑞𝑖𝐸′3

𝜋ℎ𝑓
4 𝐿]

1
4⁄

 (4.10) 

Again, Eq. (4.10) can be inserted back into Eq. (4.8). Therefore, Eq. (4.11) described the 

maximum fracture width of each vertical cross-section. 

𝑤(𝑥) = 3 [
μ𝑞𝑖(𝐿 − 𝑥)

𝐸′
]

1
4⁄

 (4.11) 

Eq. (4.10) and Eq. (4.11) are only rough approximations because Perkins and Kern do not take 

the formulation of the storage and leak off in the fracture into account. Furthermore, Nordgren 

(1972) derived as the current PKN model by adding the storage and fluid leak off into the model 

of Perkins and Kern. With consideration of the storage and leak off, the equation of continuity 

is: 

𝜕𝑞

𝜕𝑥
+ 𝑞𝐿 +

𝜕𝐴

𝜕𝑡
= 0 (4.12) 

where q is the volume flow rate through a cross-section [m3/s], A is the cross-section area of 

the fracture (for PKN model A = πwhf/4) [m2], qL is the volume rate of leak off per unit length 

[m2/s].  

qL can be calculated by Eq. (4.13) according to Carter (1957). 
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𝑞𝐿 = 2ℎ𝑓𝑢𝐿 (4.13) 

where uL is the leak off velocity at a point on the fracture wall. 

  

𝑢𝐿 =
𝐶𝐿

√𝑡 − 𝑡𝑒𝑥𝑝

 (4.14) 

where CL is the leak off coefficient, t is the current time, and texp is the time at which point uL 

was exposed. The cross-sectional area A is not Af, the area of the fracture face. 

Substituting (4.7), (4.13) into Eq. (4.12) obtains Eq. (4.15), which describes the fracture width 

a function of time and space. 

𝐸′

128μℎ𝑓

𝜕2𝑤4

𝜕𝑥2
=

8𝐶𝐿

𝜋√𝑡 − 𝑡𝑒𝑥𝑝(𝑥)
+

𝜕𝑤

𝜕𝑡
 (4.15) 

This partial differential equation is only numerically solvable. 

  

4.1.2.2 KGD model 

Figure 4.4 shows the KGD Fracture with a fixed height hf. Khristianovich and Zhelo (1955) 

assumed that the fracture width at any distance from the well is height independent. This 

assumption is the essential difference in comparison with the PKN model. Because of the 

rectangular shape of the vertical cross-section, the fracture width in the vertical cross-section 

is independent of the vertical position. This is true, if the fracture height is much larger than 

fracture half-length (hf >> L). Their solution includes the fracture mechanics aspects of the 

fracture tip. The flow rate in the fracture is constant and the flow in the fracture is simplified 

by the fact that most region (in the fracture) has the same fluid pressure as in the borehole, 

except for a small region near the tip, in which no fluid penetrated. 
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Figure 4.4 Schematic representation of a KGD fracture (Economides & Nolte 2000) 

 

Geertsma and de Klerk (1969) gave a much simpler solution to the problem with the 

assumption of a very small tip region. Equivalent to Eq. (4.7), Eq. (4.16) applies to the 

description of the 1D flow in a rectangular fracture. 

𝜕𝑝

𝜕𝑥
= −

12𝑞μ

ℎ𝑓𝑤3
 (4.16) 

The fracture width profile of a horizontal cross-section with a small unpressured tip region is 

almost the same as the profile with constant net pressure over the entire fracture. Thus, the 

fracture width can be described according to Eq. (4.8) with hf is replaced by 2L. 

𝑤𝑤 =
4

𝐸′
𝐿𝑝𝑛𝑒𝑡 (4.17) 

Eq. (4.17) can be solved with the aid of Eq. (4.16). They found expressions of the form given 

by Perkins and Kern (1961): 
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𝑝𝑛𝑒𝑡 ≈ [
21μ𝑞𝑖

64𝜋ℎ𝑓𝐿2
𝐸′3

]

1
4⁄

 (4.18) 

with the wellbore width given by 

𝑤𝑤 = [
84

𝜋

μ𝑞𝑖𝐿
2

𝐸′ℎ𝑓
]

1
4⁄

 (4.19) 

Geertsma and de Klerk also extended the model with consideration of fluid leak off according 

to Carter’s (1957) method. The volume of a two-wing KGD Fracture is 

𝑣𝑓 =
𝜋

2
ℎ𝑓𝐿𝑤𝑤 (4.20) 

Performing a volume balance and solution procedure like that of Carter, they obtained 

𝐿 =
𝑞𝑖𝑤𝑤

64𝐶𝐿
2ℎ𝑓

(𝑒𝑠2
𝑒𝑟𝑓𝑐(𝑆) +

2

√𝜋
𝑆 − 1) (4.21) 

Where 

𝑆 =
8𝐶𝐿√𝜋𝑡

𝜋𝑤𝑤
 (4.22) 

 

4.1.3 Planar 3D and pseudo-3D models 

The above two 2D models have limitations in their applications, because both assume a fixed 

fracture height, which can vary from the well (where the pressure is highest) to the fracture tip. 

Planar 3D models and pseudo-3D (P3D) models can overcome this limitation. 

 

4.1.3.1 Planar 3D model 

Planar 3D model assumes that the fracture is planar and oriented perpendicular to the far-field 

minimum in-situ stress (Economides & Nolte 2000). This model considers a close coupling 

between deformation and flow processes. Both the fracture width at any point and the overall 
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shape vary with time.  

Hirth and Lothe (1968) and Bui (1977) showed how the fracture width at a point can be 

described by the net pressure. Not only the net pressure on the calculated point but also the net 

pressure at any other point has an influence on this point. That means, the width at any point 

(x, y) is determined by an integral of the net pressure over the entire fracture. 

𝑤(𝑥, 𝑦) = ∬ 𝑓(𝑥 − 𝑥′, 𝑦 − 𝑦′)(𝑝(𝑥′, 𝑦′) − 𝜎(𝑥′, 𝑦′))𝑑𝑥′

𝑠

𝑑𝑦′ (4.23) 

where σ is the stress. 

The failure criterion normally refers to the fracture mechanics. When the critical stress intensity 

factor or fracture toughness KIc is exceeded, the fracture propagates. The tensile strength 

criterion in Eq. (4.24) is also frequently used in practice because of its simplicity. 

𝑝 − 𝜎3 > 𝛽𝑧 (4.24) 

Where βz is tensile strength [Pa]. However, the grid-resolution dependency of this criterion 

must be considered due to the stress concentration near the fracture tip. 

The fluid flow in the fracture is assumed as a 2D flow, which contains two basic equations, 

namely equations for conservation of mass, and the equations for conservation of momentum. 

The continuity equation Eq. (4.25) is dispensed from 3D to 2D, but taking the leak off effect 

and the influence of fracture width into account. The gravitational effect is integrated in the 

flow equation. 

(
𝜕(𝜌𝑤𝑢𝑥)

𝜕𝑥
+

𝜕(𝜌𝑤𝑢𝑦)

𝜕𝑦
) +

𝜕

𝜕𝑡
(𝜌𝑤) + 2𝜌𝑢𝐿 = 0 (4.25) 

In general, this model is only numerically solvable. The reasons are that all the above three 

components are coupled. The mobile boundary condition also plays an important role that is 

difficult to realize. 
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4.1.3.2 Pseudo-3D model 

P3D models were developed in the 1980s. They are built on the basic assumption that the 

reservoir elastic properties are homogeneous and averaged over all layers containing the 

fracture height. The pseudo-3D model is derived from the planar 3D model to calculate the 

fracture problem numerically. The main difference between these two models is the description 

of the fluid flow in the Fracture. Planar 3D model uses general fluid flow equation and the flow 

is simplified in the P3D model. Two main types of the P3D model, namely cell-based model 

and lumped model are discussed in detail in this section. 

 

▪ Cell-based P3D model 

In cell-based models, fracture length is divided into many discrete cells (Figure 4.5). Any 

vertical cross-section, as in the case of the PKN model, is assumed as a planar strain. These 

assumptions make these models suitable if fracture half-length is much larger than fracture 

height. The fluid flow is taken as 1D along the fracture length, so the fluid pressure is Eq. (4.26) 

𝑝 = 𝑝𝑐𝑝 + 𝜌𝑔𝑦 (4.26) 

where pcp is the pressure along a horizontal line through the center of the perforations and y is 

the vertical distance from the center of the perforations. This is based on that the vertical 

fracture extension is sufficiently slow. The pressure gradient due to the vertical flow are not 

considered. This assumption that the vertical tips of the fracture are approximately stationary 

always is called the equilibrium-height assumption. 
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Figure 4.5 Schematic demonstration of the cell-based pseudo-3D fracture geometry (Adachi et 

al. 2007) 

 

For the mechanic process, Fung et al. (1987) derived a more general solution for nonsymmetric 

multi-layer cases (Figure 4.6). The stress intensity factors KIu at the top and KIl at the bottom 

tips can be described by Eq. (4.27) and Eq. (4.28) as a function of the fluid pressure at the 

perforation center Pcp and the closure stresses in the layer σi as 

𝑘𝐼𝑢 = √
𝜋ℎ𝑓

2
[𝑝𝑐𝑝 − 𝜎𝑛 + 𝜌𝑓𝑔 (ℎ𝑐𝑝 −

3

4
ℎ𝑓)]

+ √
2

𝜋ℎ𝑓
∑(𝜎𝑖+1 − 𝜎𝑖) [

ℎ𝑓

2
𝑐𝑜𝑠−1 (

ℎ𝑓 − 2ℎ𝑖

ℎ𝑓
) − √ℎ𝑖 − (ℎ𝑓 − ℎ𝑖)]

𝑛−1

𝑖=1

 

(4.27) 

𝑘𝐼𝑙 = √
𝜋ℎ𝑓

2
[𝑝𝑐𝑝 − 𝜎𝑛 + 𝜌𝑓𝑔 (ℎ𝑐𝑝 −

1

4
ℎ𝑓)]

+ √
2

𝜋ℎ𝑓
∑(𝜎𝑖+1 − 𝜎𝑖) [

ℎ𝑓

2
𝑐𝑜𝑠−1 (

ℎ𝑓 − 2ℎ𝑖

ℎ𝑓
) − √ℎ𝑖 − (ℎ𝑓 − ℎ𝑖)]

𝑛−1

𝑖=1

 

(4.28) 

where ρf is the fluid density, hcp is the height at the center of the perforations, and hi is the height 

from the bottom tip of the fracture to the top of the ith layer.  

To solve these two equations, Pcp is first given. Thus, KIo and KIu are calculated with the current 
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fracture height hf. If KIo and KIu exceed the critical stress intensity factor, hf changed with an 

incremental height growth (Eq. (4.29)). 

ℎ𝑓
𝑖+1 = ∆ℎ𝑓𝑜 + ∆ℎ𝑓𝑢 + ℎ𝑓

𝑖  (4.29) 

where ∆hfo and ∆hfu is the fracture height increment to the top and bottom, respectively.   

This set of nonlinear equations can be solved by iteration. With the known fluid pressure Pcp 

and the known incremental height growth, the fracture width can be described by Eq. (4.30). 

𝑤(𝑦) =
4

𝐸′
(𝑝𝑐𝑝 + 𝜌𝑓𝑔(ℎ𝑐𝑝 − 𝑦) − 𝜎𝑛)√𝑦(ℎ𝑓 − 𝑦)

+
4

𝜋𝐸′
∑(𝜎𝑖+1

𝑛−1

𝑖=1

− 𝜎𝑖) [(ℎ𝑖 − 𝑦)𝑐𝑜𝑠ℎ−1 (
𝑦

|𝑦 − ℎ𝑖|

ℎ𝑓 − 2ℎ𝑖

ℎ𝑓
+

ℎ𝑖

|𝑦 − ℎ𝑖|
)

+ √𝑦(ℎ𝑓 − 𝑦)𝑐𝑜𝑠−1 (
ℎ𝑓 − 2ℎ𝑖

ℎ𝑓
)] 

(4.30) 

where y is the elevation measured from the bottom tip of the fracture. 

 

Figure 4.6 Definition of variables for the fracture containment problem (modified from 

Economides & Nolte 2000) 
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The fluid pressure Pcp are derived from the flow process. For each vertical cross-section the 

continuity equation Eq. (4.31) and the flow equation Eq. (4.32) are 

𝜕𝐴𝑢

𝜕𝑥
+

𝜕𝐴

𝜕𝑡
= −2 ∑(𝑢𝐿ℎ𝐿)𝑖

𝑖

 (4.31) 

𝑢̅𝑥 = −
𝑤2

12𝜇

𝜕𝑝

𝜕𝑥
 (4.32) 

where A is the vertical cross-sectional area, 𝑢̅𝑥 is the average cross-sectional velocity, uL and 

hL are the leak off rate and height in each layer. 

To solve this model generally there are some numerical methods, e.g. FDM with limitation of 

time discretization and time-sharing method without limitation of time discretization. 

▪ Lumped P3D model 

Lumped models are an alternative to cell-based models and were first introduced by Cleary 

(1980b). In the Lumped P3D model, the fracture propagation form is assumed as two-half-

ellipses joined at their centers in the fracture length direction (Figure 4.7). The fracture length, 

top half-ellipse, and bottom half-ellipse are calculated at each time step. Generally, the 

horizontal and vertical fracture propagation is calculated by PKN and KGD model, respectively. 

For example, Eqs. (4.33) to (4.36) are analogous to the KGD model. 

 

Figure 4.7 Schematic demonstration of the fracture geometry based on lumped p3D model 

(Adachi et al. 2007) 
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The continuum equation is 

𝜌(𝑞𝑤̅ − 𝐿𝑞𝐿) =
𝑑(𝑟3𝜌𝑤̅𝐿)

𝑑𝑡
 (Continum equation) (4.33) 

where 

𝑤̅ ≈
𝑟1𝑝𝑛𝑒𝑡

𝐸
𝐿 (4.34) 

𝑞𝑚𝑤̅𝑚 ≈
𝑟5

𝑚(𝑤̅)2𝑛+2

𝐿2
 (Power law flow equation) (4.35) 

where 

𝑟5
𝑚 =

𝑟2𝑟4𝐸

𝑟1𝜇
  (4.36) 

This is analogous to the power law flow equation. The effort should be invested in the 

determination of the unknown coefficients γ1 to γ5 by detailed simulations, laboratory 

experiments or field studies. This part will not be discussed in detail. 

 

4.2 Real 3D hydraulic fracture modeling with coupled THM effects 

MFrac and FracPro are the most widely used simulators in the Petroleum Engineering industry. 

However, they still have some deficiency, e.g. plain strain assumption, empirical leak-off model, 

full fracture closure with proppant contact cannot be simulated appropriately. In MFrac the 

simulation is forced to stop when the proppant reaches its maximum value of the compacting 

factor, even when the most area of the fracture upper part is still open without proppant (full 

closure is not yet reached). That means, the area of the proppant placement is underestimated. 

In FracPro, the proppant fills the created fracture after complete full closure. But, the proppant 

will sink to the lower part of the fracture due to the settling effect. It indicates that the area of 

the proppant placement is overestimated. The problems of both models are that they do not 

consider the hydro-mechanical conditions under contact. In fact, the fluid pressure within 

fracture under contact could be smaller than the normal stress perpendicular to the fracture wall. 
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Therefore, it is difficult to simulate the compact proppant at the upper part of the fracture during 

the closure process. 

Based on the above-introduced hydraulic fracturing models Zhou and Hou (2013) has 

developed a new approach for simulating hydraulic fracture propagation, which treats fracture 

propagation in a 3D geometric model under 3D stress state with fully hydro-mechanical 

coupling effect between fracture and matrix and integrated into the software FLAC3D (Itasca, 

2009). The proppant transport with settling effect and fracture contact in consideration of 

proppant placement were further implemented in Zhou et al. (2014). In addition, Feng et al. 

(2016) has extended the model to take the heat transport within fracture and heat exchange 

between the fracture and the surrounding reservoir rocks into account. Thus, coupled THM 

effects during the hydraulic fracturing process in a tight gas reservoir are considered together. 

As the intrinsic components of FLAC3D are partly used in the investigations, the modified 

software with this set of plug-in components is named FLAC3Dplus. The basic modeling 

concept for the new approach in FLAC3Dplus is almost the same as for the PL3D model with a 

fixed rectangular mesh. They are different only in their mathematical details to describe the 

mechanical, hydraulic and thermal behavior, including their coupling during the calculations. 

The numerical formulation of the developed model to simulate hydraulic fracturing in tight gas 

reservoirs are listed in Zhou et al. 2014 and Feng et al. 2016. 

 

4.2.1 Governing equations for mechanical deformation 

As introduced in Zhou and Hou (2013), the created fracture is assumed as an aperture between 

two parallel plates perpendicular to the minimum horizontal stress. 3D mechanical calculation 

is based on the elasto-plasticity theory. Solving the equation of motion Eq. (4.37) in a 

dynamical process to get the displacement increment in a time interval is the key point. By 

using continuum Eq. (4.38) and constitutive equation Eq. (4.39), the strain and the stress 

increment could be further estimated.  
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𝜎𝑖𝑗,𝑗 + 𝜌 (𝑏𝑖 −
𝑑𝑣𝑖

𝑑𝑡
) = 0 (4.37) 

∆𝜀𝑖𝑗 =
1

2
(∆𝑢𝑖,𝑗 + ∆𝑢𝑗,𝑖) (4.38) 

∆𝜎′ = 𝐷∆𝜀 (4.39) 

where 𝜎 = 𝜎′ + 𝛼𝐼𝑃𝑝 , σ is total stress [Pa], ρ is density [kg/m³]; bi is gravity acceleration 

[m/s²], vi is velocity [m/s], Δε is strain increment [-], u is displacement [m], Δσ' is effective 

stress increment [Pa], α is biot-coefficient [-], I is the unit matrix and D is physical matrix, i, j 

∊ (x, y, z).  

As introduced in Zhou et al. (2014), an extra strain increment induced by pressure change in 

the fracture was added in the total strain increment to describe the discontinuous behavior of 

fracture. In Figure 4.8 a tensile fracture penetrates through the center of one-row elements. 

During the hydraulic fracturing the fluid pressure in the fracture changes due to the fluid flow 

or leak off. The pressure change will only lead a strain change in the direction perpendicular to 

the fracture. Under these considerations, the strain change perpendicular to the fracture can be 

expressed as Eq. (4.40). 

∆𝜀𝑓 =
𝑃𝑓(𝑡 + 1) + 𝜎𝑛(𝑡)

𝛼1
 (4.40) 

where εf is strain induced by change of fluid pressure in fracture [-], Pf is fluid pressure in 

fracture [Pa], σn is the normal stress perpendicular to the fracture [Pa], α1 is material constants 

defined in terms of the shear modulus, G, and bulk modulus, K, as 

𝛼1 = 𝐾 +
4

3
𝐺 (4.41) 
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Figure 4.8 Demonstration of fracture elements in the geometrical model (left); load condition 

in one fracture element at the frozen time point (right) (Zhou et al. 2014) 

 

Therefore, according to Hook’s law the change of the stress in the three orthogonal directions 

at the current time step is 

𝜎𝑛(𝑛𝑒𝑤) = 𝜎𝑛(𝑜𝑙𝑑) − 𝛼1∆𝜀𝑓 (4.42) 

𝜎1,2(𝑛𝑒𝑤) = 𝜎1,2(𝑜𝑙𝑑) − 𝛼2∆𝜀𝑓 (4.43) 

where σ1, 2 is the stress in another two principal directions, α2 is material constants defined in 

terms of the shear modulus, G, and bulk modulus, K, as 

𝛼2 = 𝐾 −
2

3
𝐺 (4.44) 

If the element dimension which normal to the fracture is small, then the change of the fracture 

width can be approximated as Eq. (4.45) 

∆𝑤 = 𝜀𝑓𝑙𝑐 =
𝑝𝑓(𝑡 + 1) + 𝜎𝑛(𝑡)

𝛼1
𝑙𝑐 (4.45) 

where w is the fracture width [m] and lc is the element length which normal to the fracture [m]. 

As Eq. (4.45) states, If Pf >∣σn∣, the fracture width will be enlarged. If Pf <∣σn∣, the fracture 

width will be reduced. Physically the fracture width cannot be negative or zero because surface 

roughness prevents complete mechanical closure of a fracture. Therefore, it is necessary to 
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impose a minimum constraint wres (we permit wres > 0) on the width 

𝑤 > 𝑤𝑟𝑒𝑠 (4.46) 

In fact, when the proppant concentration reaches its maximum value (compacted proppant) or 

the fracture width reduced to the minimum constraint width wres, which means the fracture wall 

has already contacted with proppant or its self. Then the fracture width will not reduce any 

more, even if the normal stress is larger than the fluid pressure. In this situation, a contact stress 

appears which must be considered, so that Eq. (4.45) can be rewritten as follows: 

∆𝜀𝑓 =
𝑃𝑓(𝑡 + 1) + 𝜎𝑐𝑜𝑛(𝑡)+𝜎𝑛(𝑡)

𝛼1
 (4.47) 

where σcon is the contact stress with 

{
𝜎𝑐𝑜𝑛(𝑡 + 1) = 0                              𝑖𝑓 𝐶 ≤ 𝐶𝑚𝑎𝑥 𝑎𝑛𝑑 𝑤 ≥ 𝑤𝑟𝑒𝑠

𝜎𝑐𝑜𝑛(𝑡 + 1) = 𝜎𝑐𝑜𝑛(𝑡) + 𝛼1∆𝜀0 𝑖𝑓 𝐶 > 𝐶𝑚𝑎𝑥 𝑎𝑛𝑑 𝑤 < 𝑤𝑟𝑒𝑠
 (4.48) 

and Δεo is over reduced strain [-]. 

After the recalculation of the stress in the fracture element by using Eqs. (4.42) and (4.43), the 

constraint condition around it will be removed. The influence of the stress redistribution can 

thus be considered. 

 

4.2.2 Fracture propagation 

The fracture propagation criterion describes a very special type of tip boundary condition. 

Usually, numerical models obey the conventional LEFM (linear elastic fracture mechanics) 

criterion (Eq. (4.49)), that the fracture propagates if (Adachi et al. 2007)  

𝐾𝐼 = 𝐾𝐼𝑐 (4.49) 

where KI is the stress intensity factor (the strength of the inverse square-root stress singularity 

at the tip), KIc is the toughness (a material property of the rock). At the field site, the fracture 

propagation by hydraulic fracturing treatment is predominated by the combination of viscous 

dissipation and leak-off. Under these circumstances, the classical LEFM stress singularity is 
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restricted to a very small length scale near the tip (Garagash & Detournay, 2005). 

The modeling in FLAC3D (Itasca, 2009) is consist of the fixed mesh. For simplicity, the linear 

cohesive zone model in FLAC3Dplus (Zhou et al. 2014) can used to determine the fracture 

propagation. Therefore, the fracture propagation criterion can be reduced to a stress-based 

criterion. If the effective stress (considering the influence of the pore pressure) exceeds the 

critical traction stress (tensile strength), then the cohesive energy is fully dissipated and the 

fracture propagates further (Carrier et al. 2011). The critical traction stress is the physical 

property of the rock formation that is independent of the applied loading, which means it is 

convenient for the numerical implementation. 

The precondition for applying the stress based fracture propagation criterion is the small size 

of the fracture tip element. Therefore, Zhou et al. (2014) introduced an improvement for the 

correction of the strain calculation by fracture propagation. In the calculation model of Zhou 

et al. (2014), all elements are divided into three groups: fractured, partially fractured (fracture 

tip) and non-fractured elements (Figure 4.9). The fracture propagation criterion is only applied 

on the partially fractured elements. As mentioned earlier, the mesh is fixed in the modeling, so 

the partially fractured elements should be subdivided into some sub elements (with a dimension 

of 0.1 m x 0.1 m). Now the stress based fracture propagation criterion can be applied on the 

sub elements. If the effective stress exceeds the critical traction stress, the non-fractured sub 

element will be converted to the fractured sub element, which from now on serves as the 

pathway for fluid flow. If all the sub elements are cracked, the partially fractured elements will 

be converted to the fractured elements. Simultaneously the fracture tip elements will be 

automatically judged and updated. For the consideration of the partially fractured elements, 

Zhou et al. (2014) introduced a correction of strain calculation (Eq. (4.50)) in the fracture tip 

element with consideration of the ratio between the opened and the total area of a tip element, 

which is analogous to the method used in Napier and Stephansen (1987).   
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Figure 4.9 Classification and geometrical relationship of the fractured elements, partially 

fractured elements with the fracture tip and non-fractured elements (modified from Zhou et al. 

2014) 

 

∆𝜀𝑓 =
𝑃𝑓(𝑡 + 1) + 𝜎𝑐𝑜𝑛(𝑡) + 𝜎𝑛(𝑡)

𝛼1

𝐴𝑜𝑝𝑒𝑛

𝐴𝑡𝑖𝑝
 (4.50) 

where Aopen is the area of the opened fracture in a tip element [m²], Atip is the area of a tip 

element [m²]. 

The numerical formulation and verification of the developed model mentioned above to 

simulate hydraulic fracturing in tight gas reservoirs was proved in the paper of Zhou et al. 

(2014). 

 

4.2.3 Governing equations for solid-liquid two phase flow in the fracture 

The flow process has three parts in the hydraulic fracturing: flow in fracture, flow in rock 

formation and flow exchange between them. The injected slurry is a mixture of proppant and 

fluid, which can be treated as a two-component, interpenetrating continuum. The rheology of 

the mixture is strongly dependent on the proppant volumetric concentration.   

The researchers who investigated the relationship between the slurry viscosity and the proppant 
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concentration have done some experiments. Barree and Conway (1995) have derived a 

mathematical model through published correlations (Eq. (4.51)). 

𝜇𝑎 = 𝜇0 (1 −
𝐶

𝐶𝑚𝑎𝑥
)

−𝑎

 (4.51) 

where μa is the apparent viscosity of the slurry [Pa·s], μ0 is the effective Newtonian viscosity 

of the clean fluid [Pa·s], C is the proppant concentration [kg/m³], Cmax is the 

maximum/saturation proppant concentration [kg/m³] and a is the correlation coefficient [-] 

(usually 1< a <3). The effect of Eq. (4.51) is to increase the viscosity of the slurry as the 

proppant concentration increases (μa increases very rapidly as C approaches Cmax). In the 

industrial field operation, the most commonly used injection fluid is gel, e.g. guar solution, 

which has a high viscosity. That means, as concentration increases, it is expected that the slurry 

will start to behave more like a solid than a fluid. In the lower shear rate region, it behaves like 

the Newtonian fluid. But in the higher shear rate region, it is comparable to the shear-thinning 

fluid. Hence, the use of a lubrication-type equation (even with a very high viscosity) to model 

the slurry transport may become inappropriate. To describe the relationship between slurry 

viscosity and proppant concentration Eissa et al. (2007) developed a model (Eq. (4.52)), in 

which the lower, higher and transition shear rate regions were considered. 

𝜇𝑎 = 𝜇0 (1 −
𝐶

𝐶𝑚𝑎𝑥
)

−𝑎 𝑡𝑎𝑛−1 (
𝑟
𝑟𝐿

)
𝑛−1

𝑡𝑎𝑛−1 (
𝑟

𝑟𝐻
)

𝑛−1 (4.52) 

where γ is apparent shear rate [1/s], γL, γH are parameters [1/s] and n is power law coefficient 

[-].  

In FLAC3D there is no option for simulating fracture flow but only native function for fluid 

flow in porous medium. Therefore, Zhou and Hou (2013) implemented a built-in flow 

simulator FTP3D (pseudo-3D simulator for fracture flow) in FLAC3D through the user 

interface. The slurry flow in the fracture is normally assumed as the flow between two parallel 

planes. Its averaged velocity can be derived from the Navier-Stokes equation (Eq. (4.53)), 

which is the so-called cubic flow or lubricant flow. If the slurry is assumed incompressible, the 

ftp://ftp3d/
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mass conservation equation could be simplified to the volume conservation equation (Eq. 

(4.54)). The fracture aperture, the pressure gradient, the slurry density variation and the 

apparent viscosity control the movement of the slurry. Substituting Eq. (4.53) into Eq. (4.54), 

then Eq. (4.55) is obtained, which can be solved numerically. 

𝑣𝑠 = −
𝑤2

12μ𝑎

𝜕(𝑝𝑓 + 𝜌𝑠𝑔𝑧)

𝜕𝑥
 (4.53) 

𝜕𝑤

𝜕𝑡
+ ∇ ∙ (𝑣𝑠𝑤) + 𝑤𝑄𝑠 = 0 (4.54) 

𝑤(𝑄𝑖𝑛𝑗𝑒 + 𝑄𝑙𝑒𝑎𝑘) +
𝜕𝑤

𝜕𝑡
= ∇ ∙ [

𝑤2

12μ𝑎
∇(𝑝𝑓 + 𝜌𝑠𝑔𝑧)] (4.55) 

where vs is slurry velocity [m/s], 𝜌𝑠 = 𝐶𝜌𝑝 + (1 − 𝐶) is slurry density [kg/m³], ρp is proppant 

density [kg/m³], ρl is liquid density [kg/m³], g is gravity acceleration [N/s²], z is elevation [m], 

qs is source [1/s], Qinje is injection source [1/s], Qleak is leak-off source [1/s]. 

To characterize the proppant transport, the mass conservation equation Eq. (4.56) is used and 

implemented in FLAC3Dplus. The proppant velocity in Eq. (4.56) is estimated by using the 

model introduced in Gadde et al. (2004), Gadde and Sharma (2005), Liu (2006). The diffusion 

term caused by concentration gradient is neglected because of the relative much bigger 

advection velocity than the diffusion one. 

𝜕(𝐶𝑡)

𝜕𝑡
+ ∇ ∙ (𝐶𝑤𝑣𝑝) + 𝐶𝑖𝑛𝑗𝑒.𝑄𝑖𝑛𝑗𝑒. = 0 (4.56) 

where vp is the proppant velocity vector, Cinje. is the proppant concentration in the injected 

slurry [-]. 

 

4.2.4 Flow interaction between the fracture and the formation 

One of the key issues in designing a fracture treatment is accurate knowledge of how rapidly 

fluid will leak out of the fracture into the reservoir, namely the leak-off process. It is induced 

by the pressure difference between the fracture and the formation pores and has significant 

influence on fracture propagation, proppant transport and stress distribution in the formation 
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due to the change of the pore pressure. Zhou and Hou (2013) and Zhou et al. (2014) introduced 

a method to describe the leak-off process that implemented in FLAC3D. In this method, the 

exchange area is the fracture wall and a stationary Darcy flow caused by the pressure gradient 

between the fracture and the formation pores is assumed in each time step. The exchange 

volume at this time step can be approximated by Eq. (4.57), which will be further treated as the 

source term in Eq. (4.55). The fluid flow in the porous medium is numerically modeled based 

on the Darcy flow and the mass conservation (Zhou and Hou, 2013) and the pore pressure 

varied during the fluid injection. 

𝑄𝑙𝑒𝑎𝑘(𝑡+1) =
𝑘𝑚𝑠

𝜇𝑎
𝑓(𝑃𝑓(𝑡) − 𝑃𝑝(𝑡)) (4.57) 

where Qleak is the exchange volume [m3/s], f is the infiltration coefficient [1/m], S is the 

exchange area [m²], Km is the matrix permeability [m²], Pf and Pp is the fluid pressure in the 

fracture and formation pores [Pa]. 

 

4.2.5 Governing equations for the heat transport 

Not only the coupled hydro-mechanical processes but also thermal process take place during 

the hydraulic fracturing. The temperature distribution derived by means of the heat transport 

equations. The heat transport includes heat conduction, heat convection and heat radiation. In 

this section, heat conduction and heat transfer are introduced for the implementation in the 

thermal module.  

Heat conduction is defined as the heat flux in a continuum, or between two directly connected 

substances (solid or fluid) which caused by the temperature gradient. The heat flow equation 

(Eq. (4.58), Fourier 1878), the continuity equation (Eq. (4.59), Lamb 1916) and the thermal 

constitutive equation of materials (Eq. (4.60), Halliday et al. 2013) are integrated to describe 

this process mathematically. 

𝑞𝑖 = −𝜆
𝜕𝑇

𝜕𝑖
 (4.58) 
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− (
𝜕𝑞𝑥

𝜕𝑥
+

𝜕𝑞𝑦

𝜕𝑦
+

𝜕𝑞𝑧

𝜕𝑧
) + 𝑞𝑣 =

𝜕𝐻

𝜕𝑡
 (4.59) 

𝜕𝐻

𝜕𝑡
= 𝜌𝑐𝑣

𝜕𝑇

𝜕𝑡
 (4.60) 

where qi is the heat flow [W/m2] in the i direction (i = x, y, z), λ is the thermal conductivity 

[W/(m∙°C)], T is the temperature [°C], qv is the heat source of volume [W/m3], H is the stored 

heat per unit volume [J/m3], ρ is the density [kg/m3] and cv is the specific heat capacity 

[J/(kg∙°C)]. 

Integrated the above Equations obtained the heat conduction equation (Eq. (4.61)). 

𝜆
𝜕2𝑇

𝜕𝑥2
+ 𝜆

𝜕2𝑇

𝜕𝑦2
+ 𝜆

𝜕2𝑇

𝜕𝑧2
+ 𝑞𝑣 = 𝜌𝑐𝑣

𝜕𝑇

𝜕𝑡
 (4.61) 

Heat convection describes the heat exchange process between the flowing fluid (in the fracture) 

and the solid rock formation. Two systems of different phases exchange their thermal energy 

(Figure 4.10) and the driving force is the temperature gradient. In addition, the intensity of the 

heat exchange can also be influenced by other factors, e.g. fluid flow rate, surface roughness 

of the fracture walls. 

In the new heat transport module (Feng et al. 2016), all the influence factors are considered 

through an overall convective heat-transfer coefficient h. In FLAC3D, a convective boundary 

condition has the form (Eq. (4.62), Itasca 2009) 

𝑞𝑛 = ℎ(𝑇 − 𝑇𝑒) (4.62) 

where qn is the component of the flux normal to the boundary in the direction of the exterior 

normal, h is the convective heat-transfer coefficient [W/m2°C], T is the temperature of the solid 

boundary surface, and Te is the temperature of the surrounding fluid [°C]. 
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Figure 4.10 Convective heat exchange between flowing fluid and solid rock formation 

 

Zhou & Hou (2013) assumed the fracture propagation to be a planar problem. Thus, the heat 

transport in the fracture system (Feng et al. 2016) are simplified to be two-dimensional. Unlike 

FLAC3D, the new thermal module for FLAC3Dplus has been implemented in the simulator 

using the Finite Volume Method with the consideration of the heat conduction and convection 

in fractures, as well as the heat transfer between the flowing fluid and the rock formations. That 

means, the thermal influence on the mechanical behavior of the rock formations has been taken 

into consideration through the intrinsic thermal module in FLAC3D. 

 

4.2.6 Coupled THM effects between each of the processes 

The governing equations for the coupled THM processes during hydraulic fracturing are 

introduced and listed in the previous sections. Each sub-process has its own variables (e.g. 

stress, strain, displacement in mechanical deformation; fracture fluid pressure, fracture fluid 

velocity in fracture flow; proppant concentration in proppant transport; pore pressure, pore 

flow velocity in porous flow; and temperature of rock formation/fracture fluid in heat transport). 

These processes are coupled strongly with each other (Figure 4.11). The coupling effect has a 

great impact on the modeling results and thus must be taken into consideration. 

Fracture flow ↔ Mechanical deformation  

In hydraulic fracturing, the existing fracture is a discontinuous field and is formed by two 

fracture walls (i.e. boundary surface of the rock formation). During the fluid injection, the 



4 Modeling of hydraulic fracturing 

 Optimization of Multistage Hydraulic Fracturing Treatment for Maximization of the Tight Gas Productivity                                        

       - 93 - 

fracture fluid pressure will increase and act on the fracture walls that leads to the stress change 

of the boundary surface. Thus, the mechanical deformation of the rock formation will happen. 

Then the fracture width will change and leads further to the change of the fracture conductivity 

and then affects the pressure distribution. 

Fracture flow ↔ Porous flow 

During the hydraulic fracturing operation, the injected fluid will infiltrate from fracture into 

rock formations. This process is triggered by the pressure gradient between fracture and pores 

and called leak-off. In the leak-off process, mass conservation must obey, and leak-off rate is 

strongly dependent on the pressure gradient, which couples the fracture and the porous flow. 

Porous flow ↔ Mechanical deformation 

Due to the fluid leak-off, the pore pressure increased, and the effective stress decreased. This 

leads to the deformation of the rock formations. On the other hand, the pores expand, which 

leads to the change of the porosity as well as the storage capacity of the pores. The rock 

formation permeability will also be influenced. 

Fracture flow ↔ Proppant transport 

During the hydraulic fracturing operation, the proppant (solid particle) is added to the injected 

fluid to prevent the fracture from full closure after shut-in. It is a mixture of proppant and fluid 

called slurry and is a two-phase two-component flow problem. The drag force derived from the 

velocity difference between the solid and fluid is the coupled interaction forces between them. 

Proppant transport ↔ Mechanical deformation 

After shut-in, fracture will gradually close due to the fluid leak-off into the formation. At certain 

time point, the fracture wall will get in contact with the proppant and then the compaction 

process of the proppant starts. Once the maximum proppant compaction (i.e. the maximum 

proppant concentration) is achieved, further fracture closure and fracture width reduction could 

not happen anymore.  

Fracture flow ↔ Heat transport 

The fluid flow within the fracture will transport the heat at the same time. This is the heat 

convection process. 
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Heat transfer ↔ Mechanical deformation 

Due to the heat conduction and heat advection derived from the fluid leak-off, the decrease of 

the formation temperature leads to an extra tensile stress in the rock formation. Therefore, the 

minimum horizontal stress around the fracture decreases. Thus, the fracture is easier to open 

and leads to the change of the fracture geometry (mechanical deformation). 

 

Figure 4.11 Schematic demonstration of the coupling effects between the sub-processes in 

hydraulic fracturing 
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5 Development of the Frac- and FracProdu-Simulator for the 

optimization of multistage hydraulic fracturing 

In this dissertation an innovative numerical tool chain was developed for the optimization of 

the whole process from multiple hydraulic fracturing till production in the tight gas reservoir. 

The full 3D hydraulic fracturing model of FLAC3Dplus was linked with the robust design 

optimization (RDO) simulator optiSLang. To simulate the gas production process in the 

stimulated gas reservoir, the parallel multi-phase multi-component reservoir simulator 

TMVOCMP was also linked. The details of the model development and verification were 

introduced in the following sections. 

 

5.1 RDO simulator optiSLang 

optiSLang is a CAE-based software for sensitivity analysis, multi-objective and multi-

disciplinary optimization, robustness evaluation, reliability analysis and robust design 

optimization (RDO) (Dynardo 2014). 

The goal of the optiSLang is the improvement of the existing designs and creation of optimal 

new designs. 

With the help of sensitivity analysis, the designer identifies the variables which contribute most 

to a possible improvement of the optimization goal. Based on this identification, the number 

of design variables can be dramatically reduced and an efficient optimization can be performed. 

There are three sensitivity analysis methods (Variance based sensitivity analysis, Polynomial 

based sensitivity analysis, Meta-modelling e.g. Kriging, neural networks), which are very 

suitable as an optimization-preprocessing tool. However, all of them have some disadvantages 

and limitations (Table 5.1). To overcome these problems, Dynardo developed the Metamodel 

of Optimal Prognosis (Most & Will 2008). In this approach, the optimal input variable subspace 

together with the optimal meta-model are determined with the help of an objective- and model-

independent quality measure, namely the Coefficient of Prognosis (CoP). 
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Table 5.1 Comparison of the different sensitivity analysis methods 

Methods Advantage Disadvantage 

Variance based sensitivity 

analysis 

Directly quantify the 

proportion of the output 

variance 

Huge numerical effort 

Polynomial based sensitivity 

analysis 

Model response 

approximated by a 

polynomial basis function of 

linear or quadratic order with 

or without coupling terms 

Strong over-estimation of the 

approximation quality; 

limitation to polynomial 

regression 

Meta-modeling, e.g. Kriging, 

neural networks 

Model response represented 

by surrogate functions in 

terms of the model inputs 

Not clear which one most 

suitable for which problem; 

limitation to a small number 

of input variables 

Metamodel of Optimal 

Prognosis (Dynardo) 

Determine optimal input 

variable subspace together 

with the optimal Metamodel 

with help of CoP 

Parameters show larger 

deviation 

 

optiSLang automatically identifies the relevant input and output parameters and quantifies the 

forecast quality with the help of the Coefficient of Prognosis (CoP) and the Metamodel of 

Optimal Prognosis (MOP). A predictable prognosis quality is the key to an efficient 

optimization. Thus, a "no run too much" philosophy can be implemented to minimize solver 

calls. Consequently, even optimization tasks involving many variables, scattering parameter as 

well as non-linear system behavior can be solved. optiSLang’s Best-Practice-Management 

automatically selects the appropriate algorithms, such as gradient methods, genetic algorithms, 

evolutionary strategies or Adaptive Response Surface Methods. Furthermore, all methods of 

optimization and stochastic analysis can be combined concerning the task. 
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In (Most & Will 2008) a model independent measure to assess the model quality was proposed. 

This measure is the Coefficient of Prognosis (CoP), which is defined as follows Eq. (5.1) and 

Eq. (5.2). 

𝐶𝑜𝑃 = 1 −
𝑆𝑆𝐸

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑆𝑆𝑇
  (5.1) 

𝑆𝑆𝑇 = ∑(𝑦𝑖 − 𝜇𝑌)2

𝑁

𝑖=1

 (5.2) 

where N is the number of samples, yi are the sample values, and μY is the mean value. SSE
Prediction 

is the sum of squared prediction errors. These errors are estimated based on cross validation, 

SST is equivalent to the total variation of the output Y. 

In principle optiSLang is a tool used for graphical programming. Two important components 

(Dynardo, 2014) provide a base for this (Figure 5.1): 

• Nodes: Nodes can be separated in Input, Process/Properties and Output. 

• Connections: Connections are used to manage the data flow between two nodes and to 

trigger the successor node. 

 

Figure 5.1 Basic data flow of optiSLang (Dynardo, 2014) 

 

The flowchart of optiSLang sensitivity analysis (Figure 5.2a) and single-objective optimization 

(Figure 5.2b) is shown below (Dynardo, 2014). With the help of sensitivity analysis, the 

designer identifies the variables that contribute most to a possible improvement of the 

optimization goal. Based on this identification, the number of design variables may be 
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dramatically reduced and an efficient optimization with better start designs can be performed. 

 

Figure 5.2 Flowchart of optiSLang sensitivity analysis (a) and single-objective optimization (b) 

(modified from Dynardo 2014) 

 

5.2 The coupled Frac-Simulator optiSLang-FLAC3Dplus 

Figure 5.3 shows the coupling concept of the simulator optiSLang-FLAC3Dplus. Every time 

optiSLang modifies the input data and then call FLAC3Dplus to run it. After the simulation, 

optiSLang read and judge the output data, which export from the FLAC3Dplus, till the 

optimization criteria reached. 

The flowchart of the simulator optiSLang-FLAC3Dplus for hydraulic fracturing simulation is 

described in Figure 5.4. First, input parameters and design variables will be defined in input.dat. 

Then, output- and reference signals should be defined as output/reference.tab. After that, signal 

functions (variables), optimization criteria (error_norm/objective) and the solver call 

(solver.bat) will be defined. After all the predefinition a sensitivity analysis, global- and local 

optimization will run in sequence in optiSLang-FLAC3Dplus. According to the above results 

the uniqueness of the solution will be checked at last. 
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Figure 5.3 Coupling concept of the simulator optiSLang-FLAC3Dplus 

 

 

Figure 5.4 Flowchart of the simulator optiSLang-FLAC3Dplus for hydraulic fracturing 

simulation 

 

5.3 Verification of the Frac-Simulator 

In this section, we use fictive reservoir models to demonstrate inverse parameters calculation 

with optiSLang-FLAC3Dplus by hydraulic fracturing. 

 

5.3.1 Problem definition 

For the numerical investigation, a generic ¼ model is used (Figure 5.5a). The model lies at a 
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depth between 3,000 and 3,200 m and consists of three major rock formations, namely the 

caprock (50 m), the reservoir (100 m), and the basement (50 m). They are assumed to be 

siltstone, sandstone, and siltstone, respectively. The whole model has a dimension of 200, 300, 

200 m and is discretized into 21,175 rectangle elements. The near-fracture elements are finely 

discretized for better modeling of the fracture propagation, and the mesh elements of the 

fracture have a width of 2 m. 

 

Figure 5.5 (a) Generic 3D ¼ model for the numerical simulations; (b) Hydraulic fracturing 

treatment schedule 

 

The duration of the whole simulated fracturing treatment was 100 min. The slurry injection 

with a constant rate of 6 m3/min took place in the whole 80 min (Figure 5.5b). The density of 

the fracturing fluid was assumed as 1040 kg/m3 and viscosity as 0.1 Pa∙s. The injected proppant 

was typical fracturing sand (density 3500 kg/m3, diameter 0.67 mm), and its concentration 

which in consideration of the slurry injection rate was increased with time until it attained a 

maximum value of 50 kg/s after about 70 min. After 80 min, the injection well was shut-in. 

The mechanical and hydraulic properties for the three rock formations are listed in Table 5.2. 

 

Table 5.2 Mechanical and hydraulic properties of the rock formations in the calculation model 

Rock formation ρ [kg/m3] E [GPa] ν [-] σt [MPa] ϕ [-] k [m2] 

Caprock (siltstone) 2650 25 0.3 1.0 0.025 1 x 10-17 

Reservoir 2600 30 0.25 1.0 0.1 1 x 10-15 
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(sandstone) 

Baserock (siltstone) 2650 25 0.3 1.0 0.025 1 x 10-17 

 

To achieve optimal adaptation to the reference function the parameter should be predefined. 

Here three parameters and their bounds were predefined (start value = 0.075): 

f = 0.075, fwe ϵ [0.01, 1] 

μ0 = 0.075, miu0 ϵ [0.004, 0.87] 

b = 0.075, b ϵ [0.01, 1] 

𝑘𝑓 = 𝑓
𝑤𝑓

2

12
 (5.3) 

𝑚 =
𝑘

µ0𝑏
  (5.4) 

where f is the fracture surface roughness parameter [-], μ0 is the fluid viscosity [Pa∙s], b is the 

leak-off regulation parameter [-], kf is the fracture permeability [m2], wf is the fracture width 

[m], k is the reservoir permeability [m2], m is the reservoir permeability with consideration of 

leak-off. 

The objective function Eq. (5.5) is the sum of squared errors between the reference and the 

calculated bottomhole pressure function values. 

∑ (𝑦∗ − 𝑦𝑖)2 → 𝑚𝑖𝑛
𝑛

𝑖=1
 (5.5) 

Where y* is the reference bottomhole pressure function values (simulate with f = 0.1, μ0 = 0.1, 

b = 0.1) and yi is the calculated bottomhole pressure function values [Pa].  

In this parameter optimization simulation, a sensitivity analysis, global- and local optimization 

will run in sequence in optiSLang-FLAC3Dplus. According to the above results the uniqueness 

of the solution will be checked at last. Some of the results are showed in the following figures. 

  

5.3.2 Sensitivity analysis 

Sensitivity analysis is the study of how the uncertainty in the output of a model can be 
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apportioned, qualitatively or quantitatively, to different sources of variation in the input of a 

model (Saltelli et al. 2008). By means of a global sensitivity analysis and the automatic 

generation of the Metamodel of Optimal Prognosis (MOP), optimization potential and the 

corresponding important variables are identified. Figure 5.6a shows the fracture geometry in 

the simulation of the hydraulic fracture operation at the end of the injection. The fracture height 

is constrained to circa 100 m due to the large minimum horizontal stress in the cap rock and 

basement. The fracture half-length is 116 m. Figure 5.6b shows comparison of the evolution of 

the reference BHP and the simulated one in the sensitivity analysis. Totally 8 design simulations 

were carried out. We can check the simulation and the reference signal in the statistics post-

processing. The reference is covered sufficiently by the simulations. That means, the parameter 

bounds seem to be adequate for the calibration. 

 

Figure 5.6 (a) Fracture geometry by hydraulic fracturing at the end of the injection; (b) 

Comparison of the evolution of the reference BHP and the simulated one in the sensitivity 

analysis 

 

Figure 5.7 shows the 3D plot of single response with respect to the most important variables f 

and μ0. Error norm can be explained with 99%. Single global optimum is indicated. Parameter 

b is detected as not important. 
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Figure 5.7 3D plot of single response with respect to the most important variables 

 

5.3.3 Global optimization 

From the sensitivity analysis we know that, the parameter b is not sensitive to any of the 

pressure values. So, it cannot be identified and is not considered in the optimization. In global 

optimization, other parameters bounds are kept, only parameter b set as constant in the 

parameter table. Best 4 designs of sensitivity are taken as start design. Here population based 

optimization method global Evolutionary Algorithm (EA) is used. Totally 12 design 

simulations were carried out. 

The comparison of the evolution of the reference BHP and the simulated one in the global 

optimization is shown in Figure 5.8a. The Evolutionary Algorithm converges to a small signal 

difference. The red line means the best design of the global optimization, which is already very 

close to the reference BHP. Figure 5.8b shows the objective value of the singly simulated 

optimization design. Obviously, the smallest objective value is 1.48 MPa, which is design 1. 
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Figure 5.8 (a) Comparison of the evolution of the reference BHP and the simulated one in the 

global optimization; (b) Objective value of the singly simulated optimization design 

 

5.3.4 Local optimization  

In local optimization, the parameter b is also set as constant in the parameter table. Now the 

analysis status is pre-optimized. To improve the approximation quality around the optimum, 

adaptive methods are very efficient. Here a polynomial based local Adaptive Response Surface 

Method (ARSM) is recommended, which is provided by optiSLang. Then we chose the simplex 

optimizer. In local optimization, the best design of the EA optimization is imported as start 

design. The default settings for the Simplex method are kept. Totally 58 design simulations 

were carried out. 

The comparison of the evolution of the reference BHP and the simulated one in the local 

optimization is shown in Figure 5.9a. The signal of the best design (red line, Design 55) agrees 

very well with the reference. Figure 5.9b shows the objective value of the singly simulated 

optimization design. Obviously, the smallest objective value is 0.02 MPa, which is design 55. 
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Figure 5.9 (a) Comparison of the evolution of the reference BHP and the simulated one in the 

global optimization; (b) Objective value of the singly simulated optimization design 

 

The unknown parameters f = 0.11541 and μ0 = 0.13319 Pa∙s are identified by the optimizer 

(Figure 5.10). The parameter b is as constant value 0.075. 

 

Figure 5.10 Optimizer identified design (input) parameters μ0 and f 

 

From the results of the global and the local optimization, the Simplex optimizer eventually 

coupled with global Evolutionary Algorithm shows good convergence.  
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5.3.5 Check uniqueness of the solution 

Figure 5.11 left shows the parallel coordinates plot of the 58 design simulations in local 

optimization. We reduced the range of the error norm to the best values (Best Design 55, Figure 

5.11 right). The remaining signals are very close (Figure 5.9a). The f and μ0 show small 

deviations. So, they can be identified very well with the measurement data. 

 

Figure 5.11 Parallel coordinates plot of the 58 design simulations in local optimization 

 

As mentioned above, the parameter for calculation the reference BHP in FLAC3Dplus is f = 0.1, 

μ0 = 0.1, b = 0.1. According to the optimization results the best design 55 of optiSLang-

FLAC3Dplus shows the three parameters with f = 0.11541, μ0 = 0.13319, b = 0.075. Since Eq. 

(5.4) shows that the parameter μ0 multiplied to b as the denominator. Thus, μ0*b=0.00999 in 

optiSLang-FLAC3Dplus, which is the same as these two parameters multiplied in FLAC3Dplus 

μ0*b=0.01. Therefore, the verification of the developed Frac-Simulator optiSLang-

FLAC3Dplus for history matching of stimulation phase is successful. 

 

5.4 Reservoir simulator TMVOCMP 

TMVOCMP (Zhang et al. 2007) is a parallel version of the TMVOC code (Pruess & Battistelli 
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2002), a numerical simulator for three-phase non-isothermal flow of water, gas, and a 

multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional 

heterogeneous porous/fractured media. TMVOCMP retains the physical process model of 

TMVOC, designed for applications to contamination problems that involve hydrocarbon fuels 

or organic solvents in saturated and unsaturated zones. TMVOCMP can not only model 

contaminant behavior under “natural” environmental conditions but also for engineered 

systems, such as soil vapor extraction, groundwater pumping, or steam assisted source 

remediation. Therefore, TMVOCMP can handle much complicated and larger problems than 

TMVOC with a higher computationally efficiency due to its sophisticated parallel computing 

techniques. 

 

5.5 The coupled FracProdu-Simulator optiSLang-FLAC3Dplus-TMVOCMP 

Figure 5.12 shows the coupling concept of the simulator optiSLang-FLAC3Dplus-TMVOCMP. 

OptiSLang is used for optimization of parameters. At each time optiSLang modifies the input 

data and then calls FLAC3Dplus and TMVOCMP to run it. After the simulation, optiSLang read 

and judge the output data exported from FLAC3Dplus. For optimization, several rounds are 

necessary until the optimization criteria are reached. FLAC3Dplus is not only used for coupled 

simulation with TMVOCMP but also for visualization of the simulation results. 

 

Figure 5.12 Coupling concept of the simulator optiSLang-FLAC3Dplus-TMVOCMP 
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The flowchart of the simulator optiSLang-FLAC3Dplus-TMVOCMP for gas production 

simulation is described in Figure 5.13. At first the simulated fracture permeability kf and 

fracture width wf will be exported in INI_PERM.txt, which has the similar format as that of 

INCON data. They will be used to calculate the fracture zone permeability according to Eqs. 

(5.6), (5.7), (5.8) (Figure 5.14). Then, the reservoir model will be generated in MESH.txt and 

INCON.txt, which will be copied into the INFILE for TMVOCMP. After that, a reference run 

(perm_multiplier = 0.1) will be done in FLAC3Dplus and TMVOCMP to get a bottomhole 

pressure, which is treated as reference signal. Then, INFILE, Solver and Output files will be in 

optiSLang defined. After all the predefinition, a sensitivity analysis, global- and local 

optimization will run in sequence in optiSLang-FLAC3Dplus-TMVOCMP. According to the 

above results the uniqueness of the solution will be checked at last. 

 

Figure 5.13 Flowchart of the simulator optiSLang-FLAC3Dplus-TMVOCMP for gas production 

simulation 

 

Figure 5.14 Fracture zone Permeability calculation based on superposition 
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𝑘𝑦 =
𝑥1 + 𝑥2

𝑥1

𝑘𝑦
𝑚 +

𝑥2

𝑘𝑦
𝑓

=
𝑥1 + 𝑤f

𝑥1

𝑘2
+

𝑥f

𝑘𝑦
𝑓

 
(5.6) 

𝑘𝑥 =
𝑥1 ∙ 𝑘𝑥

𝑓
+ 𝑥2 ∙ 𝑘𝑥

𝑓

𝑥1 + 𝑥2
=

𝑥1 ∙ 𝑘1 + 𝑤f ∙ 𝑘𝑥
𝑓

𝑥1 + 𝑤f
 (5.7) 

𝑘𝑧 =
𝑥1 ∙ k𝑧

𝑚 + 𝑥2 ∙ 𝑘𝑧
𝑓

𝑥1 + 𝑥2
=

𝑥1 ∙ 𝑘3 + 𝑤f ∙ 𝑘𝑧
𝑓

𝑥1 + 𝑤f
 (5.8) 

where: 

ky, kx, kz: fracture zone permeability [m2] 

𝑘𝑥
𝑓
, 𝑘𝑦

𝑓
, 𝑘𝑧

𝑓
: with proppant supported fracture permeability [m2] 

k𝑥
𝑚,𝑘𝑦

𝑚, k𝑧
𝑚, k1, k2, k3: matrix/reservoir permeability [m2] 

x1: matrix width [m] 

x2, wf: fracture width [m] 

Thus, the coupled FracProdu simulator optiSLang-FLAC3Dplus-TMVOCMP was developed 

for history matching of the production phase. An equivalent continuum model is adopted for 

the coupled simulation. During the production the pore pressure is reduced. The increase in 

effective normal stress to the supported fractures (closure stress) and the resulting reduction in 

fracture conductivity are also considered (Figure 5.15). TMVOCMP will calculate the gas 

production rate and pore pressure change in the reservoir (Figure 5.16). After that the pore 

pressure is transferred to FLAC3Dplus for the mechanical simulation, through which the 

deformation and effective stress of the rock formations are obtained. The change of 

permeability is calculated in FLAC3Dplus and then transferred back to TMVOCMP. The 

updated fracture conductivity as well as the equivalent permeability is then used in the further 

hydraulic simulation. 
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Figure 5.15 The relationship between closure stress and permeability/fracture conductivity 

based on the different proppant size (CARBO Ceramics, 2006) 

 

 

Figure 5.16 Coupled THM effects during production simulation (Gou et al. 2014) 
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5.6 Verification of the developed FracProdu-Simulator 

In this section we use the reservoir model of fracturing stage 6 of Leer Z6 (Li et al. 2015) to 

demonstrate inverse parameters calculation with optiSLang-FLAC3Dplus-TMVOCMP for gas 

production simulation. For simplicity, in this verification the increased effective stress induced 

reduced fracture conductivity is not considered. FLAC3Dplus is only used for calling 

TMVOCMP and evaluation/visualization of the simulation results.  

For the numerical investigation, a generic 1/2 model is used (Figure 5.17 a). The model lies at 

a depth between 4,290 and 4,505 m and consists of two major rock formations, namely sand 

and shale. The whole model has a dimension of 300 m × 272 m × 215 m and is discretized into 

57,200 rectangle elements. The mesh elements of the fracture zone have a width of 10 m. 

 

(a)               (b) 

Figure 5.17 (a) Generic 3D 1/2 model for the numerical simulations; (b) Gas production 

treatment schedule and calculated Bottomhole Pressure 

 

The supposed duration of the whole simulated gas production was 10 years. The gas production 

took place in the standard state (1 atm, 15 °C) with a supposed constant rate of 500,000 sm3/d 

(1/2 model) in the whole 10 years (Figure 5.17 b). The produced gas consists of 94% CH4, 6% 

N2. In this simulation, only gas phase would be considered.  

The mechanical and hydraulic properties for the rock formations are already listed in Li et al. 

2015. With proppant supported fracture permeability and fracture width, which simulated from 

hydraulic fracturing in FLAC3Dplus, are exported to INI_PERM.txt. This text will be read into 
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TMVOCMP to calculate the fracture zone permeability during gas production simulation. 

To achieve optimal adaptation to the reference function the parameter should be defined. Here 

one parameter (Eq. (5.9)) and its bounds are predefined (start value): 

a = 0.1, ϵ [0.01, 1]  

𝑘 = 𝑎 ∗ 𝑘0 (5.9) 

where:  

a: permeability multiplier [-]  

k0: reservoir permeability [m2] 

k: modified reservoir permeability [m2] 

The objective function (Eq.(5.10)) is the sum of squared errors between the reference and 

calculated bottomhole pressure function values. 

∑ (𝑦∗ − 𝑦𝑖)2 → 𝑚𝑖𝑛
𝑛

𝑖=1
 (5.10) 

where: 

𝑦∗: reference bottomhole pressure function values [Pa] 

𝑦𝑖: calculated bottomhole pressure function values [Pa] 

In this parameter optimization simulation, a sensitivity analysis, global- and local optimization 

will run in sequence in optiSLang-FLAC3Dplus-TMVOCMP. According to the above results 

the uniqueness of the solution will be checked at last. Some of the results are showed in the 

following figures. 

 

5.6.1 Sensitivity analysis 

By means of a global sensitivity analysis and the automatic generation of the Metamodel of 

Optimal Prognosis (MOP), optimization potential and the corresponding important variables 

are identified. Figure 5.18 shows comparison of the evolution of the reference BHP and the 

simulated one in the sensitivity analysis. Totally 60 design simulations were carried out. We 

can check the simulation and the reference signal in the statistics post-processing. The reference 
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is covered sufficiently by the simulations. That means, the parameter bounds seem to be 

adequate for the calibration. 

 

Figure 5.18 (a) Comparison of the evolution of the reference BHP and the simulated one in the 

sensitivity analysis 

 

Figure 5.19 shows the 3D plot of single response with respect to the most important variable a. 

Error norm can be explained with 95%. There is only one variable, so parameter a is 

contributing most to the possible improvement of optimization goal. Single global optimum is 

indicated. 
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Figure 5.19 3D plot of single response with respect to the most important variables 

 

5.6.2 Global optimization 

In global optimization, bounds of parameter a are kept. Best 10 designs of sensitivity analysis 

are taken as start design. Here population based optimization method global Evolutionary 

Algorithm (EA) is used. Totally 88 design simulations were carried out. 

The comparison of the evolution of the reference BHP and the simulated one in the global 

optimization is shown in Figure 5.20 a. The Evolutionary Algorithm converges to a small signal 

difference. The red line means the best design of the global optimization, which is already very 

close to the reference BHP. Figure 5.20 b shows the objective value of the singly simulated 

optimization design. Obviously, the smallest objective value is 0.3 bar, which is design 10. 
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(a)               (b) 

Figure 5.20 (a) Comparison of the evolution of the reference BHP and the simulated one in the 

global optimization; (b) Objective value of the single simulated optimization design 

 

5.6.3 Local optimization  

In local optimization, now the analysis status is pre-optimized. To improve the approximation 

quality around the optimum, adaptive methods are very efficient. Here a polynomial based 

local Adaptive Response Surface Method (ARSM) is recommended, which is provided by 

optiSLang. Then we chose the simplex optimizer. In local optimization, best design of the EA 

optimization is imported as start design. The default settings for the Simplex method are kept. 

Totally 34 design simulations were carried out. 

The comparison of the evolution of the reference BHP and the simulated one in the local 

optimization is shown in Figure 5.21a. The signal of the best design (red line, Design 31) agrees 

very well with the reference. Figure 5.21b shows the objective value of the singly simulated 

optimization design. Obviously, the smallest objective value is 0.07 bar, which is design 31 and 

smaller than the smallest objective value of global optimization. 
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(a)                     (b) 

Figure 5.21 (a) Comparison of the evolution of the reference BHP and the simulated one in the 

global optimization; (b) Objective value of the singly simulated optimization design 

 

The unknown parameters a = 0.10015 are identified by the optimizer (Figure 5.22). 

From the results of the global and the local optimization, the Simplex optimizer eventually 

coupled with global Evolutionary Algorithm shows good convergence.  

 

Figure 5.22 Optimizer identified design (input) parameters a 

 

5.6.4 Check uniqueness of the solution 

Figure 5.23a shows the parallel coordinates plot of the 34 design simulations in local 

optimization. We reduced the range of the error norm to the best values (Best Design 31, Figure 

5.23 b). The remaining signals are very close (Figure 5.23 a). The parameter a shows small 
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deviation. So, it can be identified very well with the measurement data. 

(a)              (b) 

Figure 5.23 Parallel coordinates plot of the 34 design simulations in local optimization 

 

As mentioned above, the parameter for calculation the reference BHP in FLAC3Dplus is a = 0.1. 

According to the optimization results the best design 31 of optiSLang-FLAC3Dplus-

TMVOCMP shows the same results with a = 0.10015. Therefore, the verification of the 

developed FracProdu-Simulator optiSLang-FLAC3Dplus-TMVOCMP for history matching of 

production phase is successful.
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6 Optimization of the hydraulic fracturing operation in the tight gas 

reservoir Leer 

The developed Frac-Simulator optiSLang-FLAC3Dplus is applied in the simulation of 4 

fracturing stages of a horizontal well Z4 in a real tight gas reservoir Leer in the Northern 

German Basin, which is already introduced in detail in chapter 2. 

 

6.1 Numerical simulation of the hydraulic fracturing 

In this reservoir, the gas is stored in two types of sandstones: Bahnsen and Wustrow sandstone 

(Figure 6.1). Based on logging analysis, considering GR-logs, wave propagation velocities in 

sandstones and shales, as well as porosities, a rock-mechanical relevant sub-division of the 

Bahnsen- and Wustrow-Member was performed from vertically to slight-slanted drilled 

reference wells. With the aid of a stratigraphic correlation the Top Wustrow was matched with 

the fracture locations in the horizontal well and a most likely local rock-mechanical vertical 

sub-layer-sequence was setup to define rock-mechanical properties. 

A 3D geometrical model, which is shown in Figure 6.1, was built with a dimension of 375 m 

(x) × 1259 m (y) × 292 m (z) and at the depth below -4,308 m. It represents half of the reservoir 

due to the yz-plane-symmetry. A wellbore  had been drilled to the previously calculated 

target in the Rotliegend rock. The perforations of 4 fracturing stages along the fracturing 

sequence locate at the depth of -4,421 m, -4,423 m, -4,422 m and -4,406 m in the layer WU-

Sst-Sec6, WU-Sst-Sec5, Dirty-WU-Sst & WU-Sst-Sec3and4 and Wustrow-Sand5 & Wustrow-

Sand4. All the mechanical and hydraulic parameters for each layer are listed in Table 6.1. The 

temperature gradient of the reservoir is 2.7 °C/100 m. The temperature of the model top and 

bottom is 145 °C and 153 °C, respectively. The simulation of hydraulic fracturing was carried 

out from 1st to the 4th stage separately. The initial stress and pore pressure distribution of 4 

fracturing stages are shown in Figure 6.2. 
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Table 6.1 Mechanical and hydraulic properties of the rock formations in the calculation model 

Rock group Young's 

modulus 

Poisson 

ratio 

Permeability Porosity Density 

 [Pa] [-] [m²] [-] [kg/m³] 

Waste-Zone-Shale 2.93E+10 0.260 1.000E-21 0.050 2550 

Ba-Sst-Sec6 3.02E+10 0.193 1.067E-16 0.064 2563 

BA-Shale4 2.93E+10 0.159 9.162E-17 0.057 2589 

Ba-Sst-Sec5 3.09E+10 0.182 7.577E-17 0.052 2577 

BA-Shale3 2.73E+10 0.262 7.597E- 

17 

0.059 2579 

Ba-Sst-Sec4 3.26E+10 0.225 5.220E-18 0.022 2631 

Ba-Sst-Sec3 3.09E+10 0.197 7.673E-17 0.067 2577 

BA-Shale2 2.94E+10 0.248 8.742E-17 0.081 2600 

Ba-Sst-Sec2 2.95E+10 0.192 1.516E-16 0.097 2536 

BA-Shale1 2.93E+10 0.237 1.053E-16 0.089 2618 

Ba-Sst-Sec1 2.54E+10 0.254 3.148E-16 0.113 2536 

WU-Shale2 2.96E+10 0.267 4.841E-17 0.069 2633 

WU-Sst-Sec6 2.93E+10 0.212 7.233E-15 0.094 2538 

WU-Sst-Sec5 2.88E+10 0.198 9.720E-15 0.111 2514 

Dirty-WU-Sst 3.05E+10 0.192 5.586E-16 0.076 2567 

WU-Sst-Sec3and4 2.89E+10 0.193 1.145E-14 0.113 2501 

WU-Sst-Sec2 2.94E+10 0.223 3.265E-15 0.092 2529 

WU-Shale1 2.89E+10 0.275 6.607E-17 0.085 2618 

WU-Sst-Sec1 2.85E+10 0.253 7.572E-15 0.104 2505 

EB-Shale2 3.10E+10 0.221 7.775E-17 0.051 2605 
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EB-Silt1 3.11E+10 0.224 6.785E-17 0.051 2568 

EB-Shale1 3.09E+10 0.220 7.280E-17 0.055 2607 

Rotliegend-

Vulcanite 

3.12E+10 0.220 1.000E-21 0.042 2586 

Niendf-Damb-Mem 3.60E+10 0.228 1.000E-21 0.001 2750 

Dambeck-Shale1 3.00E+10 0.216 9.160E-17 0.032 2574 

Bahnsen-Sand5 3.09E+10 0.214 7.580E-17 0.073 2477 

Bahnsen-Shale3 3.00E+10 0.212 7.600E-17 0.025 2493 

Bahnsen-Sand4 2.98E+10 0.211 5.220E-18 0.089 2474 

Bahnsen-Silt1/Sand3 2.81E+10 0.211 7.180E-17 0.110 2431 

Bahnsen-Shale2 2.42E+10 0.249 8.740E-17 0.015 2570 

Bahnsen-Sand2 2.84E+10 0.211 1.520E-16 0.096 2386 

Bahnsen-Shale1 2.86E+10 0.210 1.050E-16 0.072 2506 

Bahnsen-Sand1 2.88E+10 0.211 3.150E-16 0.093 2415 

Wustrow-

Shale3/Sand6/Shale2 

2.80E+10 0.212 5.280E-17 0.093 2465 

Wustrow-Sand5 2.96E+10 0.210 9.720E-15 0.089 2457 

Wustrow-Sand4 2.96E+10 0.211 8.030E-15 0.091 2461 

Wustrow-Sand3 2.97E+10 0.210 8.030E-15 0.091 2476 

Wustrow-Sand2 2.95E+10 0.210 3.270E-15 0.095 2493 

Wustrow-Shale1 2.99E+10 0.210 6.610E-17 0.096 2579 

Wustrow-Sand1 2.86E+10 0.210 7.570E-15 0.107 2494 

Ebstorf-Shale2/Silt2 3.21E+10 0.215 7.280E-17 0.025 2683 

Ebstorf-Shale1 3.12E+10 0.213 7.280E-17 0.022 2707 
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Ebstorf-Silt1 3.38E+10 0.222 6.790E-17 0.048 2614 

Vulcanite 3.66E+10 0.234 1.000E-21 0.034 2704 

 

 

Figure 6.1 ½ 3D model geometry and geological stratigraphy 

 

 

Figure 6.2 Initial stress and pore pressure of 4 fracturing stages 

 

During the fracture treatments, a total of 1500 m3 fracturing fluid with 399 tons of proppants 
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(type: CARBOHSP 20/40 mesh) have been injected into the reservoir formation through 4 

stages (Frac-stage 1: 300 m3 with 76 tons; Frac-stage 2: 350 m3 with 83 tons; Frac-stage 3: 400 

m3 with 111 tons; Frac-stage 4: 450 m3 with 129 tons). The surface treating pressure were 

measured during the fracture treatment. They were converted to the bottomhole pressure (BHP) 

and used for the history matching. 

 

6.1.1 Simulation results of frac-stage 1 

During the main fracturing, the injection rate increased to 4 m³/min. Figure 6.3 shows the 

comparison of the calculated BHP from the measured treating pressure and the simulated one 

during the main fracturing. Except the unstable section at the end of the injection, which is 

caused by pre-mature screen out, the simulated pressure matches well with the calculated one, 

which proves the reliability of the modeled fracture propagation and closure. 

 

Figure 6.3 Comparison of the calculated BHP from the measured treating pressure and the 

simulated during the main fracturing 1 

 

Figure 6.4 shows the fracture pattern with width distribution and proppant mass distribution 

per unit area at shut-in and closure. At the end of the injection (t = 80 min), the fracture got a 

half-length of 126 meters and a height of 86 meters (Figure 6.5a). In the meantime, the proppant 

was distributed with a decreased concentration (mass per unit area) along the radius from the 

injection, which represents the increased injection rate of the proppant. The proppant front is 
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below the injection level because of the settling effect. At t = 1000 minutes (920 min after shut-

in) there is no proppant anymore at the middle part of the fracture, where the perforation is 

located. This may be the main reason for a poor hydraulic connection and thus for a lower 

contribution to performance. The reason for the geometry of fracture 1 is the significant change 

in horizontal stress along the depth caused by partial pressure reduction due to dynamic 

connection to the adjacent wellbore. Figure 6.5b shows the temporary development of the 

widths and the concentration distribution at perforation. Indeed, at t = 200 minutes the proppant 

concentration at perforation has already reduced to 0%, which is the main reason for the 

insufficient hydraulic connection, which means no contribution to production. 

One indicator of a successful frac-stage is a large fracture conductivity value. Fracture 

conductivity is the width of the generated fracture (wf) multiplied by the permeability of the 

propped region (kf). The propped fracture has a much higher permeability than the surrounding 

formation and acts as a high permeability channel for fluids to flow through, which improves 

production for the well. Comparison of the effect of fracture conductivity on production can be 

made easily if conductivity is cast in dimensionless terms (FCD). The dimensionless fracture 

conductivity, the fracture conductivity in respect to the conductivity capacity of the reservoir 

defined as FCD = kf⋅wf / k⋅xf (Prats, 1961). For frac-stage 1 the dimensionless fracture 

conductivity (FCD) is 12.3. 
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Figure 6.4 Fracture pattern with width distribution (a) and proppant mass distribution pro area 

(b) at shut-in (t = 80 min) and closure (t = 1000 min) during the main fracturing 1 

 

  

Figure 6.5 (a) Temporal developments of the fracture half-length and height during the main 

fracturing 1; (b) Temporal developments of the fracture and the proppant concentration at 

perforation during the main fracturing 1 

 

Figure 6.6 shows the comparison between simulator FLAC3Dplus and FracPro by the fracture 

half-length, height and average fracture width at shut-in and closure. The simulation results of 
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FracPro come from Koehler (2005). Since FracPro is a commercial simulator, it cannot 

simulate the fracture closure process properly. Thus, the simulation results between them are 

comparable, especially at shut-in.  

 

Figure 6.6 Comparison between FLAC3Dplus and FracPro by the fracture geometry at shut-in 

and closure during the main fracturing 1 

 

Figure 6.7 shows the comparison of the fracture volume and the injection volume. After t = 

1000 minutes the fracture volume stays constant, which means that the fully closure is reached. 

Figure 6.8 shows the comparison between FLAC3Dplus and FracPro by the injection volume, 

fracture volume and leak-off at shut-in and closure. The differences between them are small, 

especially at shut-in. 

 

Figure 6.7 Comparison of the fracture volume and the injection volume in the main fracturing 

during the main fracturing 1 
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Figure 6.8 Comparison between FLAC3Dplus and FracPro by the injection volume, fracture 

volume and leak-off at shut-in and closure during the main fracturing 1 

 

The viscosity distribution and the formation temperature are shown in Figure 6.9. The largest 

fluid viscosity value is 0.87 Pa∙s at shut-in. And the temperature around the perforation is 50 °C, 

which is coinciding with the injection temperature. Because of the gel breaking during the 

hydraulic fracturing, the fluid viscosity reduced gradually after shut-in. And because of the 

energy transport the formation temperature gradually comes back to the initial reservoir 

temperature. 
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Figure 6.9 Fracture pattern with Fluid viscosity (a) and reservoir temperature (b) at shut-in (t 

= 80 min) and closure (t = 1000 min) during the main fracturing 1 

 

6.1.2 Simulation results of frac-stage 2 

Figure 6.10 shows the comparison of the calculated BHP from the measured treating pressure 

and the simulated one during the main fracturing. The simulated pressure matches well with 

the calculated one, which proves the reliability of the modeled fracture propagation and closure. 
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Figure 6.10 Comparison of the calculated BHP from the measured treating pressure and the 

simulated during the main fracturing 2 

 

Figure 6.11 shows the fracture pattern with width distribution and proppant mass distribution 

per unit area at shut-in and closure. At the end of the injection (t = 87 min), the fracture got a 

half-length of 84 meters and a height of 63 meters (Figure 6.13 a). It is noteworthy in Figure 

6.11 b, that there is a maximum value appearing along the fracture length at the depth of -4439 

m by the proppant mass per unit area at shut-in. The proppant mass per unit area (Eq. (6.1)) is 

defined as, 

𝑀𝑝

𝐴
= 𝑤𝑓 ∗ 𝐶𝑝 ∗ 𝜌𝑝 (6.1) 

where Mp is proppant mass [kg], A is fracture area [m2], wf is fracture width [m], Cp is proppant 

volume concentration [%], ρp is proppant density [kg/m3]. 

For fracture 2 the dimensionless fracture conductivity (FCD) is 12.2. Figure 6.12 shows fracture 

width, proppant volume concentration and proppant mass per unit area along the fracture length 

at shut-in. The fracture width reduced along the facture length. The proppant volume 

concentration hat reached the maximum value of 65% from x = 74 m. According to the (Eq. 

(6.1)), the proppant mass per unit area is equal to the product of the facture width and proppant 

volume concentration. So, at x = 74 m the proppant mass per unit area has reached the 

maximum value of 15.6 kg/m2. That is the reason for the maximum value appearance along the 

fracture length by the proppant mass per unit area at shut-in. 
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At t = 650 minutes (563 min after shut-in), the width shows the same contour distribution as 

the proppant, which indicates that the fracture got already in contact with the proppant and no 

more closure would happen there.  

 

Figure 6.11 Fracture pattern with width distribution (a) and proppant mass distribution pro 

area (b) at shut-in (t = 87 min) and closure (t = 650 min) during the main fracturing 2 
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Figure 6.12 Fracture width, proppant volume concentration and proppant mass per unit area 

along the fracture length at shut-in (z = -4439 m) during the main fracturing 2 

 

 

 (a)            (b)   

Figure 6.13 (a) Temporal developments of the fracture half-length and height during the main 

fracturing; (b) Temporal developments of the fracture and the proppant concentration at 

perforation during the main fracturing 2 

 

Figure 6.14 shows the comparison between FLAC3Dplus and FracPro by the fracture half-length, 

height and average fracture width at shut-in and closure. The differences between them are 

small and acceptable i.e. can be neglected. 
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Figure 6.14 Comparison between FLAC3Dplus and FracPro by the fracture geometry at shut-

in and closure during the main fracturing 2 

 

Figure 6.15 shows the comparison of the fracture volume and the injection volume. After t = 

650 minutes the fracture volume stays constant, which means that the fully closure is reached. 

Figure 6.16 shows the comparison between FLAC3Dplus and FracPro by the injection volume, 

fracture volume and leak-off at shut-in and closure. The differences between them are small. 

 

Figure 6.15 Comparison of the fracture volume and the injection volume during the main 

fracturing 2 
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Figure 6.16 Comparison between FLAC3Dplus and FracPro by the injection volume, fracture 

volume and leak-off at shut-in and closure during the main fracturing 2 

 

The viscosity distribution and the formation temperature are shown in Figure 6.17. The largest 

fluid viscosity value is 0.87 Pa∙s at shut-in. And the temperature around the perforation is 50 °C, 

which is coinciding with the injection temperature. Because of the gel breaking during the 

hydraulic fracturing, the largest fluid viscosity reduced to 0.65 Pa∙s at closure. And because of 

the energy transport the formation temperature gradually comes back to the initial reservoir 

temperature. 
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Figure 6.17 Fracture pattern with Fluid viscosity (a) and reservoir temperature (b) at shut-in 

(t = 87 min) and closure (t = 650 min) during the main fracturing 2  

 

6.1.3 Simulation results of frac-stage 3 

Figure 6.18 shows the comparison of the calculated BHP from the measured treating pressure 

and the simulated one during the main fracturing. The simulated pressure matches well with 

the calculated one, which proves the reliability of the modeled fracture propagation and against 

closure. 
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Figure 6.18 Comparison of the calculated BHP from the measured treating pressure and the 

simulated during the main fracturing 3 

 

Figure 6.19 shows the fracture pattern with width distribution and proppant mass distribution 

per unit area at shut-in and closure. At the end of the injection (t = 100 min), the fracture got a 

half-length of 94 meters and a height of 76 meters (Figure 6.21 a). At t = 1000 minutes (900 

min after shut-in), the width shows the same contour distribution as the proppant, which 

indicates that the fracture got already in contact with the proppant and no more closure would 

happen there. Figure 6.21 b shows the temporary development of the widths and the 

concentration distribution at perforation. From t = 223 min the proppant concentration at 

perforation has already reached 65%. For frac-stage 3 the dimensionless fracture conductivity 

(FCD) is 19.2. 

Figure 6.20 shows fracture width, proppant volume concentration and proppant mass per unit 

area along the fracture length at shut-in and at the depth of -4432 m. The fracture width reduced 

along the facture length. The proppant volume concentration hat reached the maximum value 

of 65% from x = 79 m. According to the Eq. (6.1), the proppant mass per unit area is equal to 

the product of the facture width and proppant volume concentration. So, at x = 74 m the 

proppant mass per unit area has reached the maximum value of 16.4 kg/m2. That is the reason 

for the maximum value appearance along the fracture length by the proppant mass per unit area 

at shut-in (Figure 6.19 b). 
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Figure 6.19 Fracture pattern with width distribution (a) and proppant mass distribution pro 

area (b) at shut-in (t = 100 min) and closure (t = 1000 min) during the main fracturing 3  

 

 

Figure 6.20 Fracture width, proppant volume concentration and proppant mass per unit area 

along the fracture length at shut-in (Z = -4432m) during the main fracturing 3  
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(a)                (b)   

Figure 6.21 (a) Temporal developments of the fracture half-length and height during the main 

fracturing; (b) Temporal developments of the fracture and the proppant concentration at 

perforation during the main fracturing 3 

 

Figure 6.22 shows the comparison between FLAC3Dplus and FracPro by the fracture half-length, 

height and average fracture width at shut-in and closure. The differences between them are 

small and can be neglected. 

Figure 6.23 shows the comparison of the fracture volume and the injection volume. After t = 

1000 minutes the fracture volume stays constant, which means that the fully closure is reached. 

Figure 6.24 shows the comparison between FLAC3Dplus and FracPro by the injection volume, 

fracture volume and leak-off at shut-in and closure. The difference between them is very small. 

 

Figure 6.22 Comparison between FLAC3Dplus and FracPro by the fracture geometry at shut-

in and closure during the main fracturing 3 

 



6 Optimization of the hydraulic fracturing operation in the tight gas reservoir Leer 

 Optimization of Multistage Hydraulic Fracturing Treatment for Maximization of the Tight Gas Productivity                                        

       - 137 - 

 

Figure 6.23 Comparison of the fracture volume and the injection volume in the main fracturing 

during the main fracturing 3 

 

 

Figure 6.24 Comparison between FLAC3Dplus and FracPro by the injection volume, fracture 

volume and leak-off at shut-in and closure during the main fracturing 3 

 

The viscosity distribution and the formation temperature are shown in Figure 6.25. The largest 

fluid viscosity value is 0.87 Pa∙s at shut-in. And the temperature around the perforation is 50 °C, 

which is coinciding with the injection temperature. Because of the gel breaking during the 

hydraulic fracturing, the largest fluid viscosity reduced to 0.64 Pa∙s at closure. And because of 

the energy transport the formation temperature gradually comes back to the initial reservoir 

temperature. 
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Figure 6.25 Fracture pattern with Fluid viscosity (a) and reservoir temperature (b) at shut-in 

(t = 100 min) and closure (t = 1000 min) during the main fracturing 3  

 

6.1.4 Simulation results of frac-stage 4 

Figure 6.26 shows the comparison of the calculated BHP from the measured treating pressure 

and the simulated one during the main fracturing. Except the unstable section at the end of the 

injection, which is caused by pre-mature screen out, the simulated pressure matches well with 

the calculated one, which proves the reliability of the modeled fracture propagation and closure. 
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Figure 6.26 Comparison of the calculated BHP from the measured treating pressure and the 

simulated during the main fracturing 4 

 

Figure 6.27 shows the fracture pattern with width distribution and proppant mass distribution 

per unit area at shut-in and closure. At the end of the injection (t = 110 min), the fracture got a 

half-length of 100 meters and a height of 86 meters (Figure 6.28 a). The reason of the maximum 

value appearance along the fracture length by proppant mass per unit area at shut-in is the same 

with fracture 2 and 3 (Figure 6.27 b). At t = 740 minutes (630 min after shut-in), the width 

shows the same contour distribution as the proppant, which indicates that the fracture got 

already in contact with the proppant and no more closure would happen there. Figure 6.28 b 

shows the temporary development of the widths and the concentration distribution at 

perforation. From t = 200 min the proppant concentration at perforation has already reached 

65%. For frac-stage 4 the dimensionless fracture conductivity (FCD) is 22.6. 
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Figure 6.27 Fracture pattern with width distribution (a) and proppant mass distribution pro 

area (b) at shut-in (t = 110 min) and closure (t = 740 min) during the main fracturing 4 

 

 

Figure 6.28 (a) Temporal developments of the fracture half-length and height during the main 

fracturing; (b) Temporal developments of the fracture and the proppant concentration at 

perforation during the main fracturing 4 

 

Figure 6.29 shows the comparison between FLAC3Dplus and FracPro by the fracture half-length, 

height and average fracture width at shut-in and closure. The differences between them are 
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small and can be neglected.  

 

Figure 6.29 Comparison between FLAC3Dplus and FracPro by the fracture geometry at shut-

in and closure during the main fracturing 4  

 

Figure 6.30 shows the comparison of the fracture volume and the injection volume. After t = 

740 minutes the fracture volume stays constant, which means that the fully closure is reached. 

Figure 6.31 shows the comparison between FLAC3Dplus and FracPro by the injection volume, 

fracture volume and leak-off at shut-in and closure. The difference between them is very small. 

 

Figure 6.30 Comparison of the fracture volume and the injection volume during the main 

fracturing 4 

 



6 Optimization of the hydraulic fracturing operation in the tight gas reservoir Leer 

 Optimization of Multistage Hydraulic Fracturing Treatment for Maximization of the Tight Gas Productivity                                        

       - 142 - 

 

Figure 6.31 Comparison between FLAC3Dplus and FracPro by the injection volume, fracture 

volume and leak-off at shut-in and closure during the main fracturing 4 

 

The viscosity distribution and the formation temperature are shown in Figure 6.32. The largest 

fluid viscosity value is 0.87 Pa∙s at shut-in. And the temperature around the perforation is 50 °C, 

which is coinciding with the injection temperature. And because of the energy transport the 

formation temperature gradually comes back to the initial reservoir temperature. 
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Figure 6.32 Fracture pattern with Fluid viscosity (a) and reservoir temperature (b) at shut-in 

(t = 110 min) and closure (t = 740 min) 

 

6.1.5 Summary 

The simulation results are shown in Figure 6.33 and Figure 6.34. Figure 6.33 shows the 

comparison of the simulated BHP and the BHP derived from the measured treating pressure 

for all the four fractures. Generally, the simulated fracturing results match with the treating 

pressure measurement. It is noteworthy that a rapid rise in measured pressure shortly before 

the shut-in of the stage 1 and 4 occurred. This phenomenon occurs when the proppant in the 

fracture fluid forms a bridge across the perforations. This leads to a sudden and significant 

restriction of fluid flow and is called pre-mature screen-out. However, such changes of surface 

treating pressure will not affect the fracture propagation. 
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Figure 6.33 Comparison of the simulated BHP and the BHP derived from the measured treating 

pressure 

 

The dimensionless fracture conductivity FCD (Eq. (3.40)) is derived from the simulated fracture 

geometry and shown in Figure 6.34. The FCD becomes larger and larger from the 2st to the 4th 

fracturing stage, which reveals the performance becomes better and better. It is noteworthy that, 

although the FCD of the fracture 1 is a little bit larger than that of the fracture 2, there is already 

no proppant at the perforation of fracture 1. This should be the main reason for the insufficient 

hydraulic connection of the fracture 1 and thus a low contribution to the total gas production. 

 

Figure 6.34 The dimensionless fracture conductivity of the main fractures 1 to 4 at closure 
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The reason for the fracture geometry of frac-stage 1 is the significant changing in the vertical 

stress-log, which was caused by partial reservoir pressure reductions due to dynamic 

connections to the side-tracked well Leer Z3a (Koehler & Kerekes 2006). This heterogeneity 

in the vertical reservoir pressure profile had a severe impact on the vertical stress profile and 

thus to the fracture geometry in lateral and vertical propagation sense. 

 

6.2 Numerical simulation of the gas production 

To maximize the productivity of the tight gas wellbore, the performance of the reservoir with 

artificial fractures should be studied. This requires the gas production simulation, and the 

matching of the in-situ measured production rate is necessary. Especially for the stimulated 

reservoir, the pore pressure reduction will increase the effective normal stress on the propped 

fractures and lead to the reduction of fracture conductivity. So, the coupled thermo-hydro-

mechanical effects must be considered. 

To carry out the coupled thermo-hydraulic-mechanical simulation with optiSLang-

FLAC3Dplus-TMVOCMP (Figure 6.35), a same 3D reservoir model includes in the stimulation 

phase created four fractures with their own fracture widths and proppant distributions 

(described in section 6.1) is generated. As shown in Figure 2.5, a huge fault lies southwest of 

the fracture 4, which doesn’t allow any inflow or outflow during the gas production. Therefore, 

the left (southwest) boundary of the model is closed, meanwhile the other three lateral 

boundaries are open. The first production period lasted from Jul. 2006 to Dec. 2009 for 3.5 

years. The well is producing gas at a rate of about 19,000 m³(Vn)/h during the first half year. 

The bottomhole pressure (BHP) derived from measured well head pressure (Figure 6.36) was 

used as input for the stress sensitive reservoir simulation. 
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Figure 6.35 ½ 3D model geometry and geological stratigraphy including four created fractures 

 

The simulated temporal evolution of gas production rate, bottomhole and reservoir pressure are 

shown in Figure 6.36. The total produced gas volume is 276 Mio. sm3. Frac-stage 1 to frac-

stage 4 produce 5.18  105 sm3, 1.02  108 sm3, 8.82  107 sm3 and 8.48  107 sm3, respectively 

(Figure 6.37). The simulated gas production rate has the similar tendency to that of the in-situ 

measured data. Only there is a sudden increase in the in-situ gas rate in a short period from 

May 2007, since a sand cleanout was done at that time. However, the sand cleanout induced 

productivity index increase cannot be considered through numerical simulation, so there is a 

little bit mismatches.  
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Figure 6.36 Comparison of the simulated gas rate and in-situ measured gas rate 

 

The contribution of each fracture to the total gas production rate are listed in Figure 6.37. It 

can be seen that the gas rate of fracture 1 is very low. This confirms the earlier prediction that 

there is no proppant at the perforation and the perforation has a poor hydraulic connection to 

the supported fracture (Figure 6.34). The pore pressure distribution in the reservoir near the 

fractures are shown in Figure 6.38. Compared to other 3 fractures, the pore pressure around 

fracture 1 is reduced least. That means, the least amount of gas is produced by fracture 1.  

 

Figure 6.37 Comparison of the contribution of each fracture to the total production rate 
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Figure 6.38 Pore pressure distribution in the reservoir near the fractures at t = 3.5 a 

 

6.3 Proposal of a new calculation formula of FCD 

The Leer Z4 order of the dimensionless fracture conductivity FCD according to Prats ((3.40)) is 

2 <1 <3 <4. However, the order of the simulated gas rate at the beginning of the production is 

1 < 2 < 4 < 3 (Figure 6.39). The two orders are inconsistent. The reason for this is that the 

calculation of FCD according to Prats does not consider the proppant distribution and 

concentration, in particular the distance from the supported fracture to the perforation. As we 

all know, the closer the propped area to the perforation and the more concentrated the proppant, 

the better hydraulic connection can be achieved. Therefore, the position and concentration of 

the proppant play important roles for the later production. For this reason, a new modified 

weighted calculation formula of FCD (Eq. (6.2)) was proposed, which takes the proppant 

position and concentration into account. 

𝐹𝐶𝐷 =
∑

𝑤𝑖𝑘𝑓𝑖
𝑑𝑖
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where, 

Cmax: maximum proppant concentration (=0.65) [-] 

w: fracture width [m] 

kf: fracture permeability [m2] 

d: distance between fracture element and perforation [m] 

A: fracture element area [m2] 

Cp: proppant concentration [-] 

k: reservoir permeability [m2] 

xf: fracture half-length [m] 

n: total fracture element [-] 

With the hydraulic fracturing simulation and modified weighted FCD man can better predict the 

gas rate. Now the order of gas rate at the beginning of the production is the same as the 

prediction by modified weighted FCD (Table 6.2).  

 

Figure 6.39 Comparison of the contribution of each fracture to the total production rate at the 

beginning 

 

Table 6.2 Comparison of FCD and initially gas rate 

FCD, prats 2<1<3<4 

FCD, weighted 1<2<4<3 

gas rate, begin 1<2<4<3 
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Besides FCD, the pressure difference between the wellbore and reservoir is also a decisive factor 

for the gas rate. In addition, the fracture will affect with each other during the production. At 

the same time, the large fault (Figure 2.5) reduces the producible gas volume in the vicinity. 

Hence, the final relationship (Table 6.3) of produced gas volumes is different than that at the 

beginning (as well as the FCD). 

 

Table 6.3 Contribution of each farcture for the total produced gas volume  

 FCD, prats FCD, weighted Produced gas volume 

[Mio. sm3] 

Frac-stage 1 12.3 2.6 0.5 

Frac-stage 2 12.2 11.1 102 

Frac-stage 3 19.2 17.6 88 

Frac-stage 4 22.6 15.7 85 

Order 2<1<3<4 1 < 2 < 4 < 3 1 < 4 < 3 < 2 

 

6.4 Sensitivity analysis  

In this section a sensitivity analysis of the 3rd fracturing stage Leer Z4 (described in chapter 

5.4) were carried out with different design parameters to obtain their sensitivities, including 

proppant type, viscosity of the injection fluid and injection time/rate. 

 

6.4.1 Proppant type 

During the fracture treatment in the field, the applied proppant was CARBOHSP 20/40 (Basic 

case: 3,560 kg/m3, 667 microns). For the variation studies, two different types of proppants 

have been applied. They are CARBOECONOPROP 40/70 (Var. 1: 2,700 kg/m3, 334 microns) 

and CARBO-Lite 16/20 (Var. 2: 2,700 kg/m3, 1075 microns). 
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The simulation results are shown in Figure 6.40 and Figure 6.41. In this paper, all the fracture 

half-length and height mean the largest value during the stimulation, although the upper part 

of the fracture will closure again after shut-in due to the proppant settling effect. There is no 

significantly fracture height difference between basic and variations because of the constriction 

of the fracture barrier (Figure 6.40). The main differences between them lie in average fracture 

width and fracture volume due to the enlarged propped area of variations. The proppant 

distribution of variations is better than that of the basic case due to their lower densities (Figure 

6.41). The fracture half-length of variation 1 (CARBOECONOPROP 40/70) is slightly larger 

than that of variation 2 (CARBO-Lite 16/20). Even so, variation 2 (CARBO-Lite 16/20) still 

shows the best performances (with the largest modified weighted FCD) due to the lowest density 

and largest proppant diameter, which can lead to an abated settling effect and a larger supported 

fracture width to ensure high fracture conductivity at high strength. 

 

Figure 6.40 Comparison of the fracture geometry and volume at closure with three different 

types of proppants 
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Figure 6.41 Comparison of the fracture conductivity contour and derived dimensionless 

fracture conductivity (modified) at closure with three different types of proppants 

 

6.4.2 Viscosity of the injection fluid 

During the simulation, the viscosity of the injection fluid is dependent on both temperature and 

time. It will change from 870 cp (80°C, t = 0.1 h) to 4.2 cp (160°C, t = 10 h). These data are 

used for the basic case. For the variation study the applied two varied viscosities (+50% and -

50%) of the injection fluid are shown in Figure 6.42. 
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Figure 6.42 Varied viscosity of the injection fluid +50% (Var. 3); -50% (Var. 4) 

 

The fracture geometry is compared in Figure 6.43. The fracture half-length of the variation 3 

is lower than that of the basic case due to the higher viscosity with insufficient fluidity. That is 

also the reason for the higher height of variation 3. The changes of the injection fluid viscosity 

have almost no influences on the average fracture width and fracture volume during closure. 

The simulated dimensionless fracture conductivities are shown in Figure 6.44. The results 

reveal that variation 3 (+50% viscosity) shows relatively larger modified weighted FCD and 

thus better performance. 

 

Figure 6.43 Comparison of the fracture geometry and volume at closure with varied viscosity 



6 Optimization of the hydraulic fracturing operation in the tight gas reservoir Leer 

 Optimization of Multistage Hydraulic Fracturing Treatment for Maximization of the Tight Gas Productivity                                        

       - 154 - 

of the injection fluid 

 

 

Figure 6.44 Comparison of the fracture conductivity contour and derived dimensionless 

fracture conductivity at closure with varied viscosity of the injection fluid 

 

6.4.3 Injection time/rate 

In these variation studies the total injection volume remains constant, while the injection time 

and injection rate were varied by ±20 min (Figure 6.45). 

 

Figure 6.45 Varied injection time +20 min (Var. 5); -20min (Var. 6) 
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The simulation results of variation 6 (Figure 6.46) show higher fracture height compared with 

the basic results due to higher injection rate. But the average fracture width is smaller than that 

in the basic cases at closure. The fracture half-length and volume are the same as that in the 

basic results. The modified weighted FCD shows the best hydraulic connection during the 

variation 5 (+20 min) (Figure 6.47). 

 

Figure 6.46 Comparison of the fracture geometry and volume at closure with varied injection 

time/rate 

 

 

Figure 6.47 Comparison of the fracture conductivity contour and derived dimensionless 

fracture conductivity at closure with varied injection time/rate 
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6.4.4 Summary 

The numerical simulation with different design parameters results show that the influences of 

proppant type on fracture geometry and fracture conductivity are much larger than that of the 

viscosity of the injection fluid, while the influences of the injection time are the smallest. 

CARBO-Lite 16/20 shows the best performance due to its lower density and larger diameter, 

which can lead to an abated settling effect and a larger supported fracture width to ensure high 

frac conductivity at high strength. Increasing viscosity (e.g. +50%) of the injected fluid and 

injection time (e.g. +20 min) show a little larger FCD and thus a little better performance. 

 

6.5 Optimization of the treatment schedule and fracture number/spacing 

Optimization criteria, such as estimation of the necessary number of hydraulic fractures, the 

perforation strategy, the estimation of the stress-log and general aspects of the fracture 

stimulation design, are important to the success of the tight gas project (Koehler & Kerekes 

2006). From theoretical considerations, the number of fracture treatments depend on the 

reservoir permeability, the length of the well section within the potential layer (distance 

between the two border fractures), net thickness, fracture half-length, fracture conductivity, the 

expected compartments (estimated by means of LWD interpretations: sub-seismic faults and/or 

facies changes), vertical to horizontal permeability anisotropy ((kv/kh)-ratio) and the drainage 

radius (or assumed reservoir borders) (Koehler & Kerekes 2006). In this chapter, fracture 

number/spacing and treatment schedule of well Leer Z4 will be varied simulated and analyzed. 

The well Leer Z4 is drilled in the direction of the minimum horizontal stress, therefore the 

transverse fractures can be obtained. The spacing between perforations, the number and 

orientation of transverse fractures have major impacts on the well production performance. In 

this chapter optimization studies were carried out by varying the number of fractures and their 

spacing, as well as injection volume. 

On one hand the number of fracture stimulations were varied between 3 and 5 (Figure 6.48). 
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For the case with 5 facture treatments, the fracture spacing is uniformly 120 m. The position of 

the first and the last fracture was kept unchanged. Here the new third and fourth fracture 

adopted the same treatment schedule as that of the third fracture in the basic case. The case 

with 4 fracture treatments is based on the case with 5 fractures, but the rightmost fracture was 

removed due to the connectivity problem by the perforation (section 6.1). The case with 3 

fractures is based on the basic case, but the rightmost fracture was also removed due to the 

connectivity problem by the perforation (section 6.1). 

On the other hand, the injection volume was also varied (Table 6.4). There are generally two 

groups of simulation, one with the original total injection volume of 1500 m3 and with 

increased total injection volume of 1900 m3. For these variations, the injection time was 

unchanged, but the injection rate was varied. 

The simulation results of the hydraulic fracturing are listed as fracture geometry in Table 6.5. 

With the increased injection volume/rate, the fracture geometry (e.g. fracture half-length and 

height) also increased. 

 

Figure 6.48 Variation of numbers of fracture treatments (3 - 5) and fracture spacing (120 – 169 

m) with the corresponding fracture location (e.g. y = 478 m) and adopted treatment schedule 

(e.g. “Frac-stage 4”) 
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Table 6.4 Variations with varied fracture location (y) and injection volume 

 Injection volume [m3] vs. Fracture location [m]  

 Total 478 358.5 309 239 161 119.5 0 

Basic 

(4 Fracs) 

1,500 450 - 400 - 350 - 300 

Var. 1 

(5 Fracs) 

1,500 375 337.5 - 300 - 262.5 225 

Var. 2 

(3 Fracs) 

1,500 575 - 500 - 425 - - 

Var. 3 

(3 Fracs) 

1,900 708 - 633 - 558 - - 

Var. 4 

(4 Fracs) 

1,900 525 475 - 475 - 425 - 

Var. 5 

(5 Fracs) 

1,900 450 400 - 400 - 350 300 

 

Table 6.5 Fracture geometry of the basic and varied fracture stimulation 

Basic 

(4 Fracs) 

Half-

length [m] 

wavg 

[mm] 

Height 

[m] 

Inj vol. 

[m3] 

Frac vol. 

[m3] 

Proppant 

mass [t] 

Leak-off 

[%] 

Frac 1 148 6.2 107 300 137 76 62% 

Frac 2 84 3.5 63 350 35 83 96% 

Frac 3 94 3.5 76 400 47 111 96% 

Frac 4 100 5.2 88 450 75 129 91% 

total    1500  399  

 

Var. 1 

(5 Fracs) 

 

Half-

length [m] 

wavg 

[mm] 

Height 

[m] 

Inj vol. 

[m3] 

Frac vol. 

[m3] 

Proppant 

mass [t] 

Leak-off 

[%] 

Frac 1 148 9.2 107 222 139 56 44% 

Frac 2 70 3.8 53 262.5 26 62 97% 
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Frac 3 84 3.8 63 300 36 83 96% 

Frac 4 94 3.5 84 337.5 49 89 93% 

Frac 5 89 5.6 85 375 72 109 89% 

total    1500  399  

 

Var. 2 

(3 Fracs) 

 

Half-

length [m] 

wavg 

[mm] 

Height 

[m] 

Inj vol. 

[m3] 

Frac vol. 

[m3] 

Proppant 

mass [t] 

Leak-off 

[%] 

Frac 1 89 3.7 73 425 45 98 96% 

Frac 2 100 3.7 83 500 61 135 95% 

Frac 3 119 5.1 105 575 99 166 91% 

total    1500  399  

 

Var. 3 

(3 Fracs) 

 

Half-

length [m] 

wavg 

[mm] 

Height 

[m] 

Inj vol. 

[m3] 

Frac vol. 

[m3] 

Proppant 

mass [t] 

Leak-off 

[%] 

Frac 1 100 3.8 83 558 63 127 95% 

Frac 2 119 4.3 86 633 89 171 94% 

Frac 3 133 6.2 105 708 141 202 88% 

total    1900  500  

 

Var. 4 

(4 Fracs) 

 

Half-

length [m] 

wavg 

[mm] 

Height 

[m] 

Inj vol. 

[m3] 

Frac vol. 

[m3] 

Proppant 

mass [t] 

Leak-off 

[%] 

Frac 1 89 3.7 73 425 44 95 96% 

Frac 2 100 5.6 84 475 92 128 88% 

Frac 3 100 5.6 84 475 92 128 88% 

Frac 4 106 5.5 103 525 93 149 90% 

total    1900  500  
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Var. 5 (5 

Fracs) 

 

Half-

length [m] 

wavg 

[mm] 

Height 

[m] 

Inj vol. 

[m3] 

Frac vol. 

[m3] 

Proppant 

mass [t] 

Leak-off 

[%] 

Frac 1 148 6.2 107 304 137 76 62% 

Frac 2 84 3.5 63 353 35 80 96% 

Frac 3 94 3.5 76 397 47 108 96% 

Frac 4 94 3.5 76 397 47 108 96% 

Frac 5 100 5.2 88 449 75 128 91% 

total    1900  500  

 

Based on the stimulation results a ½ 3D reservoir model (Figure 6.49) was generated, including 

created fractures with its own fracture width and proppant distribution. From the results of 

variations 1 (5 fractures, 1500 m3 injected) and 5 (5 fractures 1900 m3 injected) it can be seen, 

the first fracture was likely to propagate to the lower part of the reservoir because of the lower 

minimal horizontal stress in the lower part of the reservoir (section 6.1), even when the 

injection was increased. That means there is no proppant anymore at the middle part of the 

fracture, where the perforation is located. This could be the reason for the lower productivity, 

because the perforation got a poor connectivity to the propped fracture. From the results of 

variation 2 (3 fractures, 1500 m3 injected) and variation 3 (3 fractures 1900 m3 injected) it can 

be seen, that the fracture half-length and height has increased due to the increased injection 

volume. However, there is no proppant any more at the perforation of fracture 3. Compared 

variation 4 with basic results, the fracture half-length and height has also increased by variation 

4 due to the increased injection volume. 
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Figure 6.49 ½ 3D model geometry and geological stratigraphy including created fractures of 

varied fracture spacing and injection volume 

 

The gas production results are listed in Table 6.6. Because of the eliminated fracture 1 and 

increased fracture volume the variation 4 (4 fractures with 120 m fracture spacing and 1900 m3 

injection volume) shows the highest produced gas volume. That means, an increase of 26.7% 

injection volume results in 12.7% more gas volume. The results of variation 3 (3 equally spaced 
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fractures as that in the basic case and 1900 m3 injection volume) is also noteworthy. The 

produced gas volume is even reduced (-12.8%) compared to the basic situation. The reason for 

this is the insufficient support at perforation by fracture 3 (Figure 6.49). That means, the 

injection rate is not, the higher the better. If it is too high, the fracture width becomes too big, 

then proppant settles down easier to the bottom. Thus, the hydraulic connection between 

fracture and wellbore is insufficient. This is a counter example.  

Although the total injection volume in the variation 1 (5 fractures, 1500 m3) and variation 2 (3 

fractures, 1500 m3) was the same as that of the basic simulation, the produced volume has 

increased slightly. This is because the total fracture volume was increased by variation 1 with 

increased fracture number, which leads to a broader influence area, so that more gas can be 

produced. By variation 2, although the fracture number reduced, the individual fracture volume 

has increased. And what’s more important is that the original low-productive fracture 1 has 

been removed. The injection fluid for this fracture has been injected to the other 3 fractures. 

Thus, the fractures in variation 2 have larger area und more gas has been produced, compared 

with variation 1. By variation 4 fracture 1 has also been removed and the other 3 fractures have 

larger area. 

The estimation of fracture positions is based on logging results and influenced by sub-seismic 

faults and compartments. Optimum number of fracture stimulations are based on local 

conditions, numerical simulation and literature. (Koehler & Kerekes 2006) 

Due to the expected fracture half length, different injection volumes are planned. According to 

the numerical simulation results (Table 6.6), the optimal number of the fracture stimulations in 

the well Leer Z4 is 3-4 fracture treatments. With a total injection volume of 1500 m3 the best 

fracture number is 3>5>4. In the meantime, the best fracture number is 4>5>3 for a total 

injection volume of 1900 m3. The sequence is reversed. The injection rate is not, the higher the 

better. It could lead to proppant settle down quicker to the bottom of the fracture. That means, 

there is no uniform and unique criterion to determine the number and spacing of the fracture, 

it should be analyzed in detail based on the local condtion, numerical simulation and literature. 
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Table 6.6 Comparison of the produced gas volume 

06. 2006 ~ 12. 2009 Produced gas 

volume 

[Mio. sm3] 

Increased gas 

volume vs basic 

[%] 

Increased inj. 

volume vs basic 

[%] 

Basic (4 Fracs, 1500 m3) 276 - - 

Var. 1 (5 Fracs, 1500 m3) 288 +4.3 0 

Var. 2 (3 Fracs, 1500 m3) 289 +4.5 0 

Var. 3 (3 Fracs, 1900 m3) 241 -12.8 +26.7 

Var. 4 (4 Fracs, 1900 m3) 311 +12.7 +26.7 

Var. 5 (5 Fracs, 1900 m3) 303 +9.8 +26.7 

 

The pore pressure distribution at t = 3.5 years is shown in Figure 6.50. It varied from 11 MPa 

to 50 MPa. The lower pore pressure means more gas are produced. The pore pressure 

distribution can also be used to evaluate the performance of the production. The problem of the 

basic simulation, variation 1 and 5 mentioned above can also been explained with Figure 6.50a, 

Figure 6.50b, Figure 6.50f. During the production, the pore pressure of fracture 1, which 

located at 0 m in y-direction reduced less than the other fractures due to deficient propped 

fracture.  

The same problem of variation 3 can also been seen in Figure 6.50d, during the production the 

pore pressure of fracture 3 reduced less than other 2 fractures due to deficient propped fracture. 
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a. Basic: 4 fracs with 1500 m3 injection volume 

 

b. Variation 1: 5 fractures with 120 m fracture spacing and 1500 m3 injection volume 



6 Optimization of the hydraulic fracturing operation in the tight gas reservoir Leer 

 Optimization of Multistage Hydraulic Fracturing Treatment for Maximization of the Tight Gas Productivity                                        

       - 167 - 

 

c. Variation 2: 3 fractures with the same fracture spacing as that in the basic case and 

1500 m3 injection volume 

 

d. Variation 3: 3 fractures with the same fracture spacing as that in the basic case and 

1900 m3 injection volume 
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e. Variation 4: 4 fractures with 120 m fracture spacing and 1900 m3 injection volume 

 

f. Variation 5: 5 fractures with 120 m fracture spacing and 1900 m3 injection volume 

Figure 6.50 Pore pressure distribution at t=3.5 years by varied fracture number and 

injection volume 
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7 Conclusions and outlook 

The most produced natural gas is in conventional reservoir with well-permeable rocks. The 

natural gas flows without further technical effort to the borehole. In the tight gas reservoir, 

natural gas located in the pore space of low-permeability sandstone layers, where it must first 

be mobilized by technical measures before it can be pumped. Thus, multi-fracs and horizontal 

borehole technology are used. 

By high-pressure injection of the fracture fluid targeted millimeter-thin flow paths are 

generated in the reservoir. So that the artificially created flow paths remain permanently open, 

the proppant is necessary. They are distributed in the flow paths so that the natural gas can flow 

better to the bore via an enlarged contact surface. 

Economic optimization can be based on the following aspects: suitable fracture propagation 

models, reservoir formation suitable and environmentally friendly fracture fluid systems, 

selection of proppant and maximum permissible pump capacity. Optimization methods are e.g. 

In-situ measurements and numerical simulations, namely history matching and optimization. 

In the oil and gas industry, there are many numerical tools that are commonly used for modeling, 

fracturing and production. So far, there is no tool that can optimize the whole process with the 

same 3D model, considering the thermo-hydromechanical coupling. Man always have to 

convert and adjust the result from one phase for the next phase. Actually, optimizing each frac 

during the stimulation phase does not represent the performance of the entire horizontal well. 

The fractures interact with each other during the production process. Therefore, the 

optimization design should also be considered from the production perspective, especially for 

multi-fracs. In this work a novel combination of different simulation tools for the modeling of 

the complex fracturing process from initiation to production was developed. 

The concept is based on the numerical model for hydraulic fracturing and the associated 

reservoir simulation model for gas production. This concept was realized through the coupling 

of FLAC3Dplus, TMVOCMP and optiSLang. With these tools, a 3D simulation model can be 

generated according to the measured geological and geophysical data and verified with the 
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measured treatment and production data. Based on the verified models, numerical simulations 

with varied design parameters can be performed to optimize tight gas production. 

Firstly, the Frac-Simulator optiSLang-FLAC3Dplus was developed to match the fracturing 

operation history automatically and optimize the hydraulic fracturing with consideration of 

thermal effect and gel-breaking. The temperature change will affect the fracture propagation 

process directly through the thermal stress as well as expansion or shrinkage. The temperature 

can also influence the fluid properties (gel breaking) as well. In the extended coupled simulator 

FLAC3Dplus the equation for heat transport in the fracture is solved using Finite-Volume-

Method (FVM) and that in the formation is solved using Finite-Difference-Method (FDM). 

The software optiSLang can be used for the parameter optimization during hydraulic fracturing. 

To match the in-situ measured surface pressure, an inverse calculation is required. During the 

coupling between optiSLang and FLAC3Dplus all parameters (e.g. wall roughness coefficient, 

viscosity of basis fluid etc.), including their start values and bandwidths, will be defined at first. 

With the help of sensitivity analysis, the designer identifies the variables which contribute 

mostly to a possible improvement of the optimization goal. Based on this identification, the 

number of design variables may be dramatically reduced, and an efficient optimization can be 

performed. For the verification the extended simulator optiSLang-FLAC3Dplus was applied in 

the hydraulic fracturing simulation in a fictive tight gas reservoir. During the verification the 

time-dependent pressure curve was simulated with predefined parameters at first. Then it is 

matched using the coupled simulator by only defining the start values and bandwidth of these 

parameters. Through the inverse calculation the parameters were determined, which are very 

close to the predefined values.  

After the verification, a numerical application of a hydraulic fracture operation at four frac-

stages in a real tight gas reservoir Leer is illustrated, which was done in 2005. Comparing the 

simulation results from FLAC3Dplus and FracPro for four frac-stages, it could be concluded 

that the difference between them is small and can be neglected. At frac-stage 1 there is no 

proppant in the middle part of the fracture at fracture closure, where the perforation is located. 

This could be the reason for the later lower productivity, because the perforation got a poor 
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connectivity to the propped fracture. The dimensionless fracture conductivity FCD, prats of Leer 

Z4 is 2 < 1 < 3 < 4. 

Secondly, to maximize the productivity of the above mentioned tight gas wellbore, Frac-Produ 

Simulator optiSLang-FLAC3Dplus-TMVOCMP was developed for the simulation of the gas 

production. It considers the coupled thermo-hydro-mechanical effects. The change of stress 

tensor and the fracture conductivity during gas production are also considered. After the 

verification, a full 3D reservoir model is generated, including in the hydraulic fracturing 

operation created four fractures with their fracture geometries and proppant contribution. The 

bottomhole pressure derived from the measured treating pressure was used as input for the 

stress sensitive reservoir simulation. According to the results, the simulated decline of 

production rate agrees with the in-situ measured data. The gas rate of each fracture at the 

beginning of the production is 1 < 2 < 4 < 3, which is not consistent with those of FCD, prats. The 

reason is that the proppant distribution and concentration, especially the distance from the 

propped area to the perforation, are not considered by FCD, prats. For this reason, a new modified 

weighted calculation formula of FCD was proposed, which takes the proppant position and 

concentration into account. Now the gas rate of each fracture at the beginning of the production 

is the same as the prediction by modified weighted FCD (1 < 2 < 4 < 3). But not only FCD but 

also geological structure and the interaction between fractures are determinant for the gas 

production volume of each fracture. Hence, the relationship between gas production rates from 

each fracture in the later production is different from that at the beginning (as well as the FCD). 

The results of sensitivity analysis with different design parameters show that the influences of 

proppant type on fracture geometry and fracture conductivity is much larger than that of 

viscosity of the injection fluid, while the influences of the injection time are the smallest. 

CARBO-Lite 16/20 shows the best performance due to its lower density and larger diameter, 

which can lead to an abated settling effect and a larger supported fracture width to ensure high 

frac conductivity at high strength. Enhanced viscosity (e.g. +50%) of the injection fluid and 

longer injection time (+20 min) or lower rate show a little larger FCD and thus a little better 

performance. 
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Numerical simulation with varied fracture number/spacing and treatment schedule results show 

that the injection rate is not, the higher the better. If it is too high, the fracture width will become 

wider and the proppant will settle down easier to the bottom, which leads to insufficient 

hydraulic connection between fracture and wellbore. The fracture spacing should also not be 

too small, otherwise the influence area/drainage radius is not enough. Due to the expected 

fracture half length, different injection volumes are planned. The optimum design for fractures 

stimulations of well Leer Z4 is 4 fractures with 120 m fracture spacing and 1900 m3 injection 

volume or 3 fractures with 148 to 169 m fracture spacing and 1500 m3 injection volume. That 

means, there is no uniform and unique criterion to determine the number and spacing of the 

fracture, it should be analyzed in detail based on the local condtion, numerical simulation and 

literature. 

For future research an alternative fracturing fluid will be developed without any chemical 

ingredients and water, e.g. gas frac. In addition, the natural fractured systems will also be 

considered in the later numerical simulation, e.g. shale gas reservoir. 
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