Modelle zur Berechnung der thermischen Leistungsfähigkeit und der Betriebsdauer von Trapezgewindetrieben

Dissertation

zur Erlangung des Doktorgrades

der Ingenieurwissenschaften

vorgelegt von

Sven Jung M.Eng.

aus Bad Nenndorf

genehmigt von der Fakultät für Mathematik/Informatik und Maschinenbau
der Technischen Universität Clausthal

Tag der mündlichen Prüfung
12.09.2019
Impressum

Bibliografische Information der Deutschen Nationalbibliothek

Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch das des Nachdrucks, der Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung des vollständigen Werkes oder von Teilen davon, sind vorbehalten.

Dissertation Technische Universität Clausthal 2019

Vorsitzender der Prüfungskomission: Dekan Prof. Dr.-Ing. Volker Wesling
Gutachter: Prof. Dr.-Ing. Armin Lohrengel
Gutachter: Prof. Dr.-Ing. Hubert Schwarze
Gutachter: Prof. Dr.-Ing. Michael Quaß

D 104

© TEWISS-Technik und Wissen GmbH, 2020
An der Universität 2 • 30823 Garbsen
Tel: 0511-762-19434 • Fax: 0511-762-18037
www.tewiss-verlag.de • mail: info@tewiss-verlag.de

ISBN 978-3-95900-458-9

Herstellung: Druckteam, Hannover
Printed in Germany
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Inhalt</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhaltsverzeichnis</td>
<td>III</td>
</tr>
<tr>
<td>Nomenklatur</td>
<td>VI</td>
</tr>
<tr>
<td>Kurzfassung</td>
<td>IX</td>
</tr>
<tr>
<td>Danksagung</td>
<td>XII</td>
</tr>
<tr>
<td>1. Einleitung</td>
<td>1</td>
</tr>
<tr>
<td>1.1. Methodische Vorgehensweise und Aufbau der Arbeit</td>
<td>3</td>
</tr>
<tr>
<td>1.1.1. Methodik zur Überwachung der Reibungswärme im ersten Modellmodul</td>
<td>4</td>
</tr>
<tr>
<td>1.1.2. Methodik zur Betriebsdauerprognose im zweiten Modellmodul</td>
<td>5</td>
</tr>
<tr>
<td>1.1.3. Methodik der Gleitflächencharakterisierung</td>
<td>6</td>
</tr>
<tr>
<td>1.1.4. Methodik zur Beurteilung der Einflusseffekte von Werkstoffspezifikationen</td>
<td>7</td>
</tr>
<tr>
<td>1.1.5. Abgrenzung der Arbeit und wissenschaftlicher Mehrwert</td>
<td>7</td>
</tr>
<tr>
<td>1.1.6. Aufbau der Arbeit</td>
<td>8</td>
</tr>
<tr>
<td>1.2. Einführung in den Fachgebiet „tribologisches System Trapezgewindetrieb“</td>
<td>10</td>
</tr>
<tr>
<td>1.3. Darlegung des Problems, Motivation für dessen Lösung</td>
<td>11</td>
</tr>
<tr>
<td>1.4. Grundbegriffe wichtigster Verschleißeinflussfaktoren</td>
<td>12</td>
</tr>
<tr>
<td>1.4.1. Temperatur</td>
<td>12</td>
</tr>
<tr>
<td>1.4.2. Pressung</td>
<td>15</td>
</tr>
<tr>
<td>1.4.3. Gleitgeschwindigkeit</td>
<td>19</td>
</tr>
<tr>
<td>1.4.4. Zusammenfassung</td>
<td>20</td>
</tr>
<tr>
<td>2. Stand der Forschung</td>
<td>21</td>
</tr>
<tr>
<td>2.1. Methoden der Verschleißberechnung</td>
<td>21</td>
</tr>
<tr>
<td>2.1.1. Empirisches Verschleißgesetz von Archard</td>
<td>21</td>
</tr>
<tr>
<td>2.1.2. Verschleißtheorie von MacGregor</td>
<td>22</td>
</tr>
<tr>
<td>2.1.3. Molekular-mechanische Ermüdungstheorie von Kragelski</td>
<td>23</td>
</tr>
<tr>
<td>2.1.4. Energiespeicherhypothese von Tross und Fleischer</td>
<td>24</td>
</tr>
<tr>
<td>2.1.5. Firmen-/Produktspezifische Verschleißmodelle für Trapezgewinde</td>
<td>25</td>
</tr>
<tr>
<td>2.1.6. Andersartige Tribosysteme mit gleitender Trapezgeometrie</td>
<td>25</td>
</tr>
<tr>
<td>2.2. Thermische Analysemethoden</td>
<td>26</td>
</tr>
<tr>
<td>2.2.1. Berechnungsmethoden der Wärmeableitung</td>
<td>26</td>
</tr>
<tr>
<td>2.2.2. Methoden zur Beschreibung thermischer Reibleistungsfähigkeit</td>
<td>28</td>
</tr>
<tr>
<td>2.2.3. Berechnungsmethode des Wärmeübergangskoeffizienten</td>
<td>29</td>
</tr>
<tr>
<td>2.2.4. Berechnungsmodelle zur Reibkontakttemperatur</td>
<td>31</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

3. Zielsetzung der Arbeit, Hypothesen und Versuchsplanung .. 33
 3.1. Wissenschaftliche Vorgehensweise .. 33
 3.2. Methode der Einflussgrößenbestimmung ... 35
 3.3. Hypothesen .. 36
 3.4. Versuchsplanung ... 37
 3.5. Prüfstandstechnik ... 40

4. Temperaturverhalten von Trapezgewindetrieben ... 41
 4.1. Problembeschreibung .. 41
 4.2. Ziel ... 41
 4.3. Methode .. 42
 4.4. Versuchsbeschreibung .. 42
 4.5. Vergleich der simulierten Spindeltemperatur mit den Versuchsergebnissen 43
 4.6. Fehlerquellenanalyse ... 48
 4.7. Zusammenfassung .. 49

5. Verschleißverhalten von Trapezgewindetrieben ... 50
 5.1. Pressung .. 50
 5.1.1. Problembeschreibung ... 50
 5.1.2. Ziel .. 50
 5.1.3. Methode .. 51
 5.1.4. Versuchsbeschreibung ... 51
 5.1.5. Auswertung ... 52
 5.1.6. Fehlerquellenanalyse .. 53
 5.1.7. Zusammenfassung ... 54
 5.2. Gleitgeschwindigkeit ... 55
 5.2.1. Problembeschreibung ... 55
 5.2.2. Ziel .. 55
 5.2.3. Methode .. 55
 5.2.4. Versuchsbeschreibung ... 56
 5.2.5. Auswertung ... 56
 5.2.6. Fehlerquellenanalyse .. 57
 5.2.7. Zusammenfassung ... 57
 5.3. Gewindendenndurchmesser .. 57
 5.3.1. Problembeschreibung ... 57
 5.3.2. Ziel .. 58
 5.3.3. Methode .. 58
 5.3.4. Versuchsbeschreibung ... 58
 5.3.5. Auswertung ... 58
 5.3.6. Fehlerquellenanalyse .. 59
 5.3.7. Zusammenfassung ... 60
<table>
<thead>
<tr>
<th>5.4. Eingriffsverhältnis</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.1. Problem beschreibung</td>
<td>60</td>
</tr>
<tr>
<td>5.4.2. Ziel</td>
<td>60</td>
</tr>
<tr>
<td>5.4.3. Methode</td>
<td>61</td>
</tr>
<tr>
<td>5.4.4. Versuchs beschreibung</td>
<td>61</td>
</tr>
<tr>
<td>5.4.5. Auswertung</td>
<td>62</td>
</tr>
<tr>
<td>5.4.6. Fehler quellenanalyse</td>
<td>63</td>
</tr>
<tr>
<td>5.4.7. Zusammenfassung</td>
<td>63</td>
</tr>
<tr>
<td>5.5. Werkstoff paarung</td>
<td>63</td>
</tr>
<tr>
<td>5.5.1. Problem beschreibung</td>
<td>63</td>
</tr>
<tr>
<td>5.5.2. Ziel</td>
<td>64</td>
</tr>
<tr>
<td>5.5.3. Methode</td>
<td>64</td>
</tr>
<tr>
<td>5.5.4. Versuchs beschreibung</td>
<td>64</td>
</tr>
<tr>
<td>5.5.5. Auswertung</td>
<td>65</td>
</tr>
<tr>
<td>5.5.6. Fehler quellenanalyse</td>
<td>66</td>
</tr>
<tr>
<td>5.5.7. Zusammenfassung</td>
<td>66</td>
</tr>
<tr>
<td>5.6. Gleit flächen charakteristik</td>
<td>66</td>
</tr>
<tr>
<td>5.6.1. Problem beschreibung</td>
<td>66</td>
</tr>
<tr>
<td>5.6.2. Ziel</td>
<td>67</td>
</tr>
<tr>
<td>5.6.3. Methode</td>
<td>67</td>
</tr>
<tr>
<td>5.6.4. Versuchs beschreibung</td>
<td>67</td>
</tr>
<tr>
<td>5.6.5. Auswertung</td>
<td>68</td>
</tr>
<tr>
<td>5.6.6. Gleit flächenarten charakterisierung</td>
<td>69</td>
</tr>
<tr>
<td>5.6.7. Fehler quellenanalyse</td>
<td>71</td>
</tr>
<tr>
<td>5.6.8. Zusammenfassung</td>
<td>72</td>
</tr>
<tr>
<td>5.7. Zusammenfassung der Effekte einzelner Einflussgrößen</td>
<td>73</td>
</tr>
<tr>
<td>6. Gesamt zusammenfassung und weiterführende Arbeiten</td>
<td>74</td>
</tr>
<tr>
<td>6.1. Anwendung des Modells und Praxis empfehlungen</td>
<td>74</td>
</tr>
<tr>
<td>6.1.1. Vorausgesetzte Eingangswerte</td>
<td>74</td>
</tr>
<tr>
<td>6.1.2. Ablaufplan der Berechnung</td>
<td>78</td>
</tr>
<tr>
<td>6.2. Zusammenfassung</td>
<td>80</td>
</tr>
<tr>
<td>6.3. Ausblick</td>
<td>81</td>
</tr>
<tr>
<td>6.3.1. Methode der Gleitflächen charakterisierung</td>
<td>81</td>
</tr>
<tr>
<td>6.3.2. Informationseinblendung auf Displayanzeige</td>
<td>81</td>
</tr>
<tr>
<td>6.3.3. Empfehlung für eingehauste Trapez gewindetriebe</td>
<td>82</td>
</tr>
</tbody>
</table>

Glossar | 83 |
Literatur | 85 |
Anhang | 92 |
Nomenklatur

<table>
<thead>
<tr>
<th>Zeichen</th>
<th>Einheit</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_a</td>
<td>[mm²]</td>
<td>Nominelle Kontaktfläche</td>
</tr>
<tr>
<td>A_G</td>
<td>[m²]</td>
<td>Gehäusefläche</td>
</tr>
<tr>
<td>A_L</td>
<td>[m²]</td>
<td>Wärmeabgebende Oberfläche des Lagers/der Leitmuttern</td>
</tr>
<tr>
<td>A_S</td>
<td>[m²]</td>
<td>Wärmeabgebende Oberfläche der Spindel</td>
</tr>
<tr>
<td>a_x</td>
<td>[-]</td>
<td>Faktor für den ungeschmierten Fall</td>
</tr>
<tr>
<td>α</td>
<td>[%]</td>
<td>vom Tribokörper aufgenommener Bruchteil an Wärmemenge</td>
</tr>
<tr>
<td>$\bar{\alpha}$</td>
<td>[W/m²·K]</td>
<td>mittlere äquivalente Wärmeübergangskoeffizient</td>
</tr>
<tr>
<td>α_w</td>
<td>[W/m²·K]</td>
<td>Wärmeübergangszahl</td>
</tr>
<tr>
<td>α_R</td>
<td>[W/m²·K]</td>
<td>scheinbare Wärmeübergangszahl am Rippenfuß</td>
</tr>
<tr>
<td>α_G</td>
<td>[W/m²·K]</td>
<td>Wärmeübergangszahl der Grundfläche des Rohres</td>
</tr>
<tr>
<td>B</td>
<td>[mm]</td>
<td>Lagerbreite</td>
</tr>
<tr>
<td>B_K</td>
<td>[m]</td>
<td>Kontaktbreite</td>
</tr>
<tr>
<td>δ_B</td>
<td>[N/mm²]</td>
<td>Bruchspannung</td>
</tr>
<tr>
<td>δ_R</td>
<td>[mm]</td>
<td>mittlere Rippenstärke</td>
</tr>
<tr>
<td>σ_s</td>
<td>[N/mm²]</td>
<td>Fließgrenze (Fließspannung)</td>
</tr>
<tr>
<td>C_t</td>
<td>[°C·s/Nm]</td>
<td>Konstante, charakterisiert thermische Eigenschaften der Werkstoffe und geometrische Konfiguration</td>
</tr>
<tr>
<td>c_1 und c_2</td>
<td>[J/kg·K]</td>
<td>Wärmekapazität des Reiters 1 und des Gegenkörpers 2</td>
</tr>
<tr>
<td>D</td>
<td>[mm]</td>
<td>Lagerdurchmesser</td>
</tr>
<tr>
<td>d_1</td>
<td>[mm]</td>
<td>Kerndurchmesser des Gewindes/Rohres</td>
</tr>
<tr>
<td>d_2</td>
<td>[mm]</td>
<td>Flankendurchmesser des Gewindes</td>
</tr>
<tr>
<td>d</td>
<td>[mm]</td>
<td>Nenndurchmesser des Gewindes/der Rippe</td>
</tr>
<tr>
<td>d_W</td>
<td>[mm]</td>
<td>Wellendurchmesser</td>
</tr>
<tr>
<td>ε_B</td>
<td>[%]</td>
<td>Bruchdehnung</td>
</tr>
<tr>
<td>$\bar{\varepsilon}_B$</td>
<td>[N/mm²]</td>
<td>Mittlere Bruchenergiedichte</td>
</tr>
<tr>
<td>ε_R</td>
<td>[N/mm²]</td>
<td>Scheinbare Reibungsenergiedichte</td>
</tr>
<tr>
<td>F_A</td>
<td>[N]</td>
<td>Axialkraft</td>
</tr>
<tr>
<td>F_N</td>
<td>[N]</td>
<td>Normalkraft</td>
</tr>
<tr>
<td>H</td>
<td>[N/mm²]</td>
<td>Härte HB</td>
</tr>
<tr>
<td>H_1</td>
<td>[mm]</td>
<td>Gewindetragtiefe/Flankenüberdeckung</td>
</tr>
<tr>
<td>H_H</td>
<td>[m]</td>
<td>Hubhöhe</td>
</tr>
<tr>
<td>h_3</td>
<td>[mm]</td>
<td>Flankenhöhe des Gewindes (entspricht der Rippenhöhe)</td>
</tr>
<tr>
<td>h_v</td>
<td>[mm]</td>
<td>Verschleißhöhe</td>
</tr>
<tr>
<td>h_{VE}</td>
<td>[mm]</td>
<td>Einlaufverschleißhöhe</td>
</tr>
<tr>
<td>l_b</td>
<td>[mm/m]</td>
<td>Lineare Verschleißintensität</td>
</tr>
<tr>
<td>J</td>
<td>[-]</td>
<td>mechanisches Wärmeäquivalent</td>
</tr>
<tr>
<td>K_1 und K_2</td>
<td>[-]</td>
<td>Konvektionsfaktor des Reiters 1 und des Gegenkörpers 2</td>
</tr>
<tr>
<td>k_{abr}</td>
<td>[-]</td>
<td>Abrasivitätsverschleißkoeffizient</td>
</tr>
<tr>
<td>Symbol</td>
<td>Einheit</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>k_V</td>
<td>[mm/Nm]</td>
<td>Verschleißkoeffizient (bezogen auf Verschleißhöhe)</td>
</tr>
<tr>
<td>k_t</td>
<td>[-]</td>
<td>Gewindetragfaktor</td>
</tr>
<tr>
<td>k_V</td>
<td>[mm³/Nm]</td>
<td>Verschleißkoeffizient (bezogen auf Verschleißvolumen)</td>
</tr>
<tr>
<td>L_M</td>
<td>[mm]</td>
<td>Tragende Länge der Leitmutter</td>
</tr>
<tr>
<td>l_1</td>
<td>[m]</td>
<td>Wärmédiffusionslänge des Reiters 1 und des Gegenkörpers 2</td>
</tr>
<tr>
<td>l_2</td>
<td>[m]</td>
<td>Breite der quadratischen Zwischenfläche</td>
</tr>
<tr>
<td>λ_1 und λ_2</td>
<td>[W/m·K]</td>
<td>Wärmeleitfähigkeit des Reiters 1 und des Gegenkörpers 2</td>
</tr>
<tr>
<td>λ_L</td>
<td>[W/m·K]</td>
<td>Wärmeleitfähigkeit der Luft</td>
</tr>
<tr>
<td>λ_R</td>
<td>[W/m·K]</td>
<td>Wärmeleitfähigkeit der Rippe</td>
</tr>
<tr>
<td>μ_G</td>
<td>[-]</td>
<td>Gleitreibungskoeffizient</td>
</tr>
<tr>
<td>μ_H</td>
<td>[-]</td>
<td>Haftreibungskoeffizient</td>
</tr>
<tr>
<td>N</td>
<td>[-]</td>
<td>Nutzungsdauer, Anzahl von Übergleitungen (bei Nullverschleiß)</td>
</tr>
<tr>
<td>N_g</td>
<td>[-]</td>
<td>geforderte Nutzungsdauer, Anzahl von Übergleitungen</td>
</tr>
<tr>
<td>N_x</td>
<td>[-]</td>
<td>Nutzungsdauer, Anzahl von Übergleitungen (bei Verschleißfall)</td>
</tr>
<tr>
<td>Nu_R</td>
<td>[-]</td>
<td>Nußeltzahl Rippe</td>
</tr>
<tr>
<td>$Nu_{R,\text{lam}}$</td>
<td>[-]</td>
<td>Nußeltzahl Rippe mit laminarer Strömung</td>
</tr>
<tr>
<td>$Nu_{R,\text{tur}}$</td>
<td>[-]</td>
<td>Nußeltzahl Rippe mit turbulenter Strömung</td>
</tr>
<tr>
<td>n_k</td>
<td>[-]</td>
<td>Kritische Zahl der Energieimpulse</td>
</tr>
<tr>
<td>n_S</td>
<td>[m/s]</td>
<td>Drehfrequenz der Spindel</td>
</tr>
<tr>
<td>θ</td>
<td>[grad]</td>
<td>Neigungswinkel einer Unebenheit</td>
</tr>
<tr>
<td>p_h</td>
<td>[mm]</td>
<td>Gewindesteigung</td>
</tr>
<tr>
<td>P</td>
<td>[W]</td>
<td>Reibungsleistung</td>
</tr>
<tr>
<td>Pr</td>
<td>[-]</td>
<td>Prandtlzahl</td>
</tr>
<tr>
<td>p</td>
<td>[N/mm²]</td>
<td>Pressung</td>
</tr>
<tr>
<td>π</td>
<td>[-]</td>
<td>Kreiszahl (mathematische Konstante)</td>
</tr>
<tr>
<td>Q_1</td>
<td>[W/s]</td>
<td>Wärmestrom des Reiters 1 und des Gegenkörpers 2</td>
</tr>
<tr>
<td>Q_S</td>
<td>[W/m²]</td>
<td>Wärmestromdichte der Leitmutter</td>
</tr>
<tr>
<td>q_L</td>
<td>[W/mm²]</td>
<td>Wärmestromdichte der Spindel</td>
</tr>
<tr>
<td>R^2</td>
<td>[-]</td>
<td>Bestimmtheitsmaß</td>
</tr>
<tr>
<td>Re</td>
<td>[-]</td>
<td>Reynoldszahl</td>
</tr>
<tr>
<td>R_w</td>
<td>[m²·K/W]</td>
<td>Wärmewiderstand</td>
</tr>
<tr>
<td>r</td>
<td>[m]</td>
<td>Zylinderradius</td>
</tr>
<tr>
<td>ρ_1 und ρ_2</td>
<td>[kg/m³]</td>
<td>Dichte des Reiters 1 und des Gegenkörpers 2</td>
</tr>
<tr>
<td>ρ_R</td>
<td>[-]</td>
<td>Riefenrichtungsfaktor in Bezug auf Gleitreibung</td>
</tr>
<tr>
<td>S_{nv}</td>
<td>[m]</td>
<td>Kumulierter Gleitweg</td>
</tr>
<tr>
<td>S_L</td>
<td>[m]</td>
<td>Gleitweg während einer Operation (z.B.: Hublänge)</td>
</tr>
<tr>
<td>S_W</td>
<td>[m]</td>
<td>Kontaktweglänge während einer Operation (z.B.: Reiterlänge)</td>
</tr>
<tr>
<td>s_K</td>
<td>[mm]</td>
<td>Lagerwanddicke</td>
</tr>
<tr>
<td>T</td>
<td>[°C]</td>
<td>Temperatur der Körperoberfläche (zur Umgebung)</td>
</tr>
</tbody>
</table>
Nomenklatur

\(\Delta T\) [\(^\circ\text{C}\)] Temperaturdifferenz

\(T_K\) [\(^\circ\text{C}\)] Kontakt-Grenzflächentemperatur

\(T_m\) [\(^\circ\text{C}\)] mittlere Lagertemperatur

\(T_R\) [\(^\circ\text{C}\)] reibbedingte Blitztemperatur

\(T_S\) [\(^\circ\text{C}\)] Spindeltemperatur

\(T_U\) [\(^\circ\text{C}\)] Umgebungstemperatur

\(T_V\) [\(^\circ\text{C}\)] Volumen temperatur

\(T_W\) [\(^\circ\text{C}\)] Wellentemperatur

t [mm] Länge eines Rippenelements

\(t_h\) [s] Hubzeit

\(t_s\) [s] Stillstandszeit an einem Totpunkt/U mkehrpunkt

\(\tau_f\) [N/mm\(^2\)] Reibungsschubspannung

\(\tau_{max}\) [N/mm\(^2\)] maximale Schubspannung

\(\tau_v\) [N/mm\(^2\)] Schubspannung, bei der nach 2000 Übergleitungen die Hälfte der maximalen Höhe der Oberflächenunebenheiten abgetragen wurde

\(\tau_x\) [N/mm\(^2\)] vorgegebene Schubspannung

\(V_v\) [mm\(^3\)] Verschleißvolumen

\(v\) [m/s] Gleitgeschwindigkeit

\(v_1\) und \(v_2\) [m/s] Gleitgeschwindigkeit des Reiters 1 und des Gegenkörpers 2

\(v_L\) [m\(^2\)/s] Kinematische Viskosität der Luft

\(v_v\) [-] Verschleißzahl

\(W_R\) [J] Reibungsarbeit

\(w\) [m/s] Relativgeschwindigkeit Gleitfläche/U mgebungsmedium

\(w_{U}\) [m/s] Geschwindigkeit des Umgebungsmediums

\(\chi\) [-] Faktor für Bewegungsart des Radialgleitlagers

\(\gamma_R\) [-] empirischer Faktor für Grenzbedingung beim Nullverschleißfall

\(\zeta_R\) [-] Energieakkumulationszahl
Kurzfassung

Die Arbeit beschäftigt sich mit dem Temperatur- und Verschleißverhalten von Trapezgewindetrieben. Hier werden zwei Modelle zur Berechnung der thermischen Leistungsfähigkeit und zur Verschleißberechnung vorgestellt.

Abstract

The doctoral thesis deals with the temperature and wear behavior of trapezoidal screw threads. Two models for the calculation of the thermal performance and the wear are presented.

An important result of the doctoral thesis is the presentation of a dynamic method for the analytical description of the thermal performance of trapezoidal screw threads. The new method proves to be a better alternative to the conventional static method. The conventional description of the thermal behavior takes place statically over the empirically determined product from the pressing and the sliding speed. It needs correction factors considering the dynamic operating conditions and leads to scientifically controversial numerical equations. The new dynamic method is based on the heat theory of Fourier / Newton as well as on physical relationships and existing thermodynamic models for profile cylinders.

Further scientific findings are provided by the analysis, which is used to check the transferability of existing general wear models to trapezoidal screw threads. The sensitivity analysis illustrate the effects of the most important influencing factors, which are dominant in the thermal and wear behavior of the trapezoidal screw threads. All hypothetical assumptions are supported by empirical experiments. The consideration of the sliding surface characteristics in the model represents a special scientific value.

The doctoral thesis is of interest to designers and users of the trapezoidal screw threads. It contains the experience-based practical recommendations for the operation and the determination of the required design parameters. Within the thesis the practical application of the empirical model for the calculation of the operating time is described step by step.
Работа посвящена температуре и износу трапециевидных винтовых приводов. Здесь представлены две модели для расчета тепловой характеристики и для расчета износа.

Существенным результатом диссертации является представление динамического метода для аналитического описания тепловой характеристики трапециoidalных винтов. Новый метод оказывается лучшей альтернативой общепринятому статическому методу. Прежнее описание тепловой характеристики происходит статически через эмпирически определенный продукт из прессования и скорости скольжения. Это требует применения коррекционных факторов для учета динамически изменяющихся условий эксплуатации и приводит к научно-спорным числовым уравнениям. Новый динамический метод основан на теории тепла Фурье / Ньютона, а также на физических закономерностях и существующих термодинамических моделях для профильных цилиндров.

Дальнейшие научные результаты предоставляет анализ, который используется для проверки переносимости существующих универсальных моделей износа на трапециoidalные винты. С помощью анализа чувствительности здесь показаны эффекты важнейших переменных факторов, которые оказывают доминирующее влияние на характеристику температуры и износа трапециoidalных винтов. Все гипотетические предположения подтверждаются эмпирическими экспериментами. Включение характеристики поверхности скольжения в модели представляет собой особую научную ценность.

Работа особенно интересна для конструкторов и потребителей трапециевидных винтов. Она содержит практические, основанные на опыте рекомендации для эксплуатации и для определения необходимых параметров проектирования. Здесь пошагово описывается практическое применение эмпирической модели для расчета времени работы.
Danksagung

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Institut für Konstruktionselemente, Mechatronik und Elektromobilität (IKME) und am Institut für Verfahrenstechnik, Energietechnik und Klimaschutz (IVEK) der Hochschule Hannover.

Mein besonderer Dank gilt Herrn Prof. Dr.-Ing Michael Quaß für die hervorragende Betreuung. Die von ihm gewährten Freiheiten und damit verbundene selbstständige Arbeitsweise brachten mich bei der Bearbeitung des Forschungsprojekts und der Abfassung der Dissertation voran.

Herrn Prof. Dr.-Ing. Armin Lohrengel und Herrn Prof. Dr.-Ing. Hubert Schwarze danke ich für das Interesse, das sie dieser Arbeit entgegengebracht haben und für die freundliche Übernahme des Gutachtens.

Mein Dank richtet sich auch an die Firma RK Rose+Krieger GmbH für die Bereitstellung von Testmaterialien und des Prüfstandes.

Allen Mitarbeitern von IKME und IVEK danke ich herzlichst für die außergewöhnlich kollegiale Arbeitsatmosphäre, geprägt von großer Menschlichkeit.

Ich danke allen mir nahestehenden Menschen für ihr Verständnis und die Rücksichtnahme während der Erstellung dieser Arbeit.

Vielen Dank!
1. Einleitung

<table>
<thead>
<tr>
<th>a)</th>
<th>b)</th>
<th>c)</th>
<th>d)</th>
<th>e)</th>
<th>f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) metrisches Gewinde</td>
<td>b) metrisches Feingewinde</td>
<td>c) Withworth-Rohrgewinde</td>
<td>d) Trapezgewinde</td>
<td>e) Sägengewinde</td>
<td>f) Rundgewinde</td>
</tr>
</tbody>
</table>

Abb. 1.1.: Gebräuchlichste Gewindearten [Wit09]

Metrisches Spitzgewinde wird vorzugsweise bei Befestigungsschrauben und Muttern angewendet. Diese Gewindeart ist als ein Regelgewinde oder als ein Feingewinde erhältlich. Ein Regelgewinde hat einen Durchmesserbereich von 1…68 mm und mit einer Steigung von 0,25…6 mm. Der Durchmesser vom Feingewinde liegt im Bereich von 1…1000 mm, bei einer Steigung von 0,2…8 mm.

Das Withworth-Rohrgewinde dient zur Herstellung einer druckdichten, mechanischen Verbindung von Fittings, Hähnen, Armaturen, Rohren oder Gewindeflanschen. Dabei kann im Gewinde ein Dichtmittel zur besseren Abdichtung verwendet werden.

Das Trapezgewinde kann in einer eingängigen oder in einer mehrgängigen Ausführung, mit einem Durchmesser von 8…300 mm hergestellt werden.

Das Sägengewinde hat einen Durchmesserbereich von 10…1250 mm bei Steigungen von 2…44 mm. Dieses Gewinde kann als ein- oder mehrgängiges Bewegungsgewinde hergestellt werden. Die axiale Kraftübertragung ist dabei nur einseitig möglich, zum Beispiel bei Hub- und Druckspindeln.
1. Einleitung

Das Rundgewinde weist einen Durchmesserbereich von 8…200 mm auf. Es hat nahezu keine Kerbwirkung aber nur eine geringe Flankenüberdeckung. Das großzügige Fuß- und Kopfspiel ermöglicht die Anwendung bei starken Verschmutzungen, zum Beispiel als ein Bewegungsgewinde bei rauhem Betrieb.

Aufgrund von hohen Reibungsverlusten weisen gleitende Bewegungsgewinden einen niedrigen Wirkungsgrad auf. Bei einem eingängigen Bewegungsgewinde, beispielsweise mit einem trapezförmigen Gewindeflankenprofil, liegt der Wirkungsgrad bei 15…48% und bei einem mehrgängigen Gewinde liegt der Wirkungsgrad bei 50…80%.

Eine Alternative dazu ist ein Kugelgewindetrieb (Abb. 1.2.). Hier liegt eine niedrige Rollreibung vor und er weist einen Wirkungsgrad von circa 98% auf. Seine Tragfähigkeit in axialer Richtung ist allerdings im Vergleich zu einem Trapezgewindetrieb geringer und der Herstellungspreis höher.

Abb. 1.2.: Kugelgewindetrieb [Wit09]

In der Branche von Bewegungsgewinden ist das Interesse an neu entwickelten Werkstoffen besonders groß. Neue Werkstoffe eröffnen weitere Möglichkeiten zur Findung einer optimalen Reibpaarung. Es wird besonders über die polymerbasierten Werkstoffe für die Muttern heiß diskutiert, die herkömmliche Werkstoffe ablösen sollen. Die steigende Nachfrage und wachsende Ansprüche an die Leistungsfähigkeit der technischen Polymeren sind hoch aktuell.

Die genaue Werkstoffzusammensetzung, bleibt wohl ein Herstellergeheimnis.

Die vorliegende Arbeit behandelt die Frage, ob und wie die Betriebsdauerberechnung sowie die Berechnung reibungsbedingter thermischer Leistungsfähigkeit von Trapezgewindetrieben realisierbar ist. Hier werden die literaturbekannten allgemeingültigen Methoden zur Verschleißberechnung dargestellt und deren Übertragbarkeit auf Trapezgewindetriebe experimentell überprüft. Zur analytischen Berechnung reibungsbedingter thermischer Leistungsfähigkeit von Trapezgewindetrieben wird hier eine Methode vorgeschlagen, die empirisch überprüft wird.

1.1. Methodische Vorgehensweise und Aufbau der Arbeit

Trapezgewindetriebe dienen zur Umwandlung einer Rotationsbewegung in eine Translationsbewegung. Bei höheren Betriebsleistungen können die Verlustgrößen wie reibungsbedingte Wärme und Verschleiß dramatisch ansteigen und so die Betriebsdauer von Trapezgewindetrieben signifikant beeinträchtigen.

An das Modell zur Berechnung der sicheren Betriebsdauer von Trapezgewindetrieben werden in der Praxis zwei wesentliche Anforderungen gestellt. Das Modell soll einerseits die Überprüfung reibungsbedingter Wärmeabgabefähigkeit ermöglichen und andererseits die verschleißbezogene Betriebsdauer prognostizieren. Es ist dabei notwendig zu wissen, welchen Zustand die Gleitflächen aufweisen, die zu Wechselwirkungen zwischen dem Wärme- und Verschleißverhalten führen können.

Aus diesem Grund fokussiert sich die Methodik zur Modellbildung auf zwei wesentliche Modellmodule, die das Wärme- und Verschleißverhalten von Trapezgewindetrieben bei definierter Gleitflächencharakteristik der Reibkörper behandeln.

Bei der Modellbildung werden zuerst die bekannten analytischen Modelle für Temperatur- und Verschleißberechnung aus dem Stand der Forschung herangezogen und auf Übertragbarkeit beurteilt. Darauf folgend sind zur Bestätigung der
Übertragbarkeit des hier entwickelten analytischen Modells empirische Versuche notwendig.

1. Einleitung

1.1.1. Methodik zur Überwachung der Reibungswärme im ersten Modellmodul

Im ersten Rechenschritt wird der Wärmeübergangswiderstand der Gewindespindel bestimmt. Da eine Gewindespindel die Form eines Profilzylinders hat, können die bekannten Gleichungen für einen querangeströmten Profilzylinder zur Berechnung des Wärmeübergangswiderstandes verwendet werden.

Im zweiten Rechenschritt erfolgt die Berechnung der in die Gewindespindel induzierten Wärmestromdichte. Sie lässt sich über die Reibungsarbeit, die Konvektionsfläche im Hubbereich sowie Hub- und Stillstandszeiten mit allgemeinen physikalischen Gleichungen berechnen.

Im anschließenden dritten Rechenschritt wird die höchste Temperatur der Gewindespindel mit dem Fourierschen Gesetz berechnet. Diese Temperatur ist mit der maximal zulässigen Betriebstemperatur des thermisch schwächsten Reibkörpers zu vergleichen. Sie darf keine zulässigen Betriebstemperaturen überschreiten.

Es ist anzumerken, dass das Modell einen empirisch ermittelten Gleitreibungskoeffizient voraussetzt, weil der Gleitreibungskoeffizient erfahrungsgemäß nicht immer konstant ist und daher permanent gemessen werden muss.

Zur Verifizierung des Modells werden empirische Versuche nach einem Versuchsplan durchgeführt. Dabei wird die Temperatur an der Gewindespindeloberfläche berührungslos mittels eines Infrarotthermometers bei systematisch variierten

An Trapezgewindetrieben sind weitere wichtige Einflussgrößen wie Gleitgeschwindigkeit, Gewindenendurchmesser und Eingriffsverhältnis variierbar, deren Einfluss auf das Wärmeverhalten noch nicht bekannt ist. Diese Einflussgrößen werden auch systematisch variert und in der Versuchsplanung berücksichtigt, um deren Einflusseffekte zu untersuchen und im Modell zu berücksichtigen.

1.1.2. Methodik zur Betriebsdauerprognose im zweiten Modellmodul

Das zweite Modellmodul ist für die Betriebsdauerberechnung eines Trapezgewindetriebes vorgesehen. Bei der Modellbildung für die Betriebsdauerberechnung von Trapezgewindetrieben werden benötigte Informationen aus dem Stand der Forschung einbezogen. Es werden die allgemeingültigen und systemspezifischen Modelle auf die Übertragbarkeit analysiert. Die Modelle, die sich auf eine Trapezgewindeform oder auf weitere buchsenförmige Maschinenelemente beziehen, sind ebenso betrachtenswert. Interessant sind dabei auch die firmen-/produktsspezifischen Modelllösungen.

1. Einleitung

die Verschleißcharakteristik einer Reibpaarung mit einem spezifischen Verschleißkoeffizienten.

1.1.3. Methodik der Gleitflächencharakterisierung

1.1. Methodische Vorgehensweise und Aufbau der Arbeit

1.1.4. Methodik zur Beurteilung der Einflusseffekte von Werkstoffspezifikationen

Das Reibungs- und Verschleißverhalten von Reibpaarungen gilt in der Tribologie als spezifisch. Einige wissenschaftliche Literaturquellen [Fle80] [Arc80] [Hab14] sehen jedoch über die spezifischen Unterschiede zwischen den einzelnen Gleitwerkstoffen hinweg. Entweder bezeichnen sie die Reibpaarungen sehr allgemein und geben dazu eine Verschleißcharakteristik an. Oder sie halten nur einige technische Werkstoffeigenschaften, beispielsweise Härte, als signifikant verantwortlich für die Verschleißcharakteristik.

1.1.5. Abgrenzung der Arbeit und wissenschaftlicher Mehrwert

Das in dieser Dissertation erarbeitetes Modell grenzt sich von bekannten Modellen dadurch ab, dass in die Beschreibung des Wärme- und Verschleißverhaltens auch die Gleitflächencharakteristik miteinfließt.

Außerdem wird hier eine dynamische Berechnung zur Überprüfung der Wärmeabgabefähigkeit ausgearbeitet, die die herkömmliche statische Berechnung ablöseng soll. Die neue Berechnung basiert auf der Wärmetheorie von Fourier/Newton. Sie gründet auf physikalischen Zusammenhängen und auf einem thermodynamischen Modell für Profilzylinder. Das neue Modell zeichnet sich durch ihre Praxistauglichkeit aus, da es zu analytisch berechneten Ergebnissen führt, die empirisch überprüfbar sind.

Die herkömmliche Überprüfung der thermischen Wärmeabgabefähigkeit einer Reibpaarung erfolgt über das Produkt aus Pressung und der Gleitgeschwindigkeit, das für jede Veränderung im Betrieb einen neuen Korrekturfaktor voraussetzt. Das herkömmliche statische Verfahren weist bei der Anwendung an Trapezgewindetrieben Mängel auf, die über mehrere Korrekturfaktoren zu wissenschaftlich umstrittenen Zahlenwertgleichungen führen.
1. Einleitung

1.1.6. Aufbau der Arbeit

Ausgehend vom beschriebenen Stand der Forschung, handelt es sich im nachstehenden Kapitel (Kapitel 3) um die Präzisierung konkreter Ziele. Hier ist die wissenschaftliche Vorgehensweise zur Erreichung der Ziele in einem Arbeitsplan veranschaulicht und beschrieben. Im Anschluss hieran steht die Systematik der Suche nach verschleißrelevanten Einflussgrößen, die durch eine Ursache-Wirkung-Analyse hergeleitet und in einem Ishikawa-Diagramm abgebildet wurden. Danach folgen die aufgestellten Hypothesen, die erarbeiteten Versuchspläne und die Erläuterung des Funktionsprinzips des Prüfstandes, an dem die Versuche und Messungen durchgeführt wurden.

Im nächsten Teil dieser Arbeit (Kapitel 4) wird das Temperaturverhalten von Trapezgewindetrieben betrachtet. Hier wird die relative Spindeltemperatur von Trapezgewindetrieben analytisch mittels eines ausgewählten Modells berechnet, das hypothetisch auf Trapezgewindetriebe anwendbar ist. Die Berechnung sieht eine
1.1. Methodische Vorgehensweise und Aufbau der Arbeit

Der Abschluss dieser Arbeit (Kapitel 6) dient der Zusammenfassung der Ergebnisse und gibt eine Empfehlung für weiterführende Arbeiten. Für die Verschleiß- und Temperaturmodelle werden die Voraussetzungen, Besonderheiten und Handlungsempfehlungen genannt, die bei der Anwendung an Trapezgewindetrieben bedeutend sind. Dazu gibt es einen Verweis auf „Anhang A“, in dem sich ein praktisches Rechenbeispiel für die Anwendung des Modells zur analytischen Bestimmung der thermischen Leistungsfähigkeit von Trapezgewindetrieben mit anschließender Betriebsdauerberechnung befindet. Im Ausblick ist eine Empfehlung zur Gleitflächencharakterisierung von Trapezgewindespindeln genannt und eine Möglichkeit beschrieben, wie man im Statusfenster am Bedienerfeld eines Trapezgewindetriebes eine Information über die Wartung und Wärmeverhalten ausgeben kann.
1. Einleitung

1.2. Einführung in den Fachgebiet „tribologisches System Trapezgewindetrieb“

Eine Trapezgewindespindel und eine Trapezgewindemutter sind Maschinenelemente, die zusammen einen Trapezgewindetrieb bilden. Ein Trapezgewindetrieb ist ein Schraubengewinde, das rotatorische Drehbewegung in translatorische Längsbewegung umwandelt. Dabei gleitet die Leitmutter entlang der Leitspindel (Abb. 1.3.).

![Abb. 1.3.: Trapezgewindetrieb](image)

In der Herstellung werden die Leitmuttern in der Regel geschnitten. Die Trapezgewindespindeln werden in der Serienfertigung gerollt. Im Vergleich zu geschnittenen Spindeln mit unterbrochener Faserverlauf weisen die gerollten Spindeln eine verdichtete Oberfläche mit höherer Verschleißfestigkeit auf. Der Rohling, aus dem eine Spindel gerollt wird, ist ein Stab. Der Stab wird auf einen Nenndurchmesser kaltgezogen und erhält die Zustandsbezeichnung „+C“ oder er wird kaltgezogen mit anschließender Schälung und erhält die Zustandsbezeichnung „+SH“. Die nachträgliche Schälung beseitigt die dünne Zunderschicht. Die gerollten Spindeln mit unterschiedlichen Zustandsbezeichnungen „+C“ oder „+SH“ weisen auch eine unterschiedliche Charakteristik auf. Optisch sieht die Oberfläche einer geschälten Spindel mit der Zustandsbezeichnung „+SH“ glatter aus als die Oberfläche einer kaltgezogenen mit der Zustandsbezeichnung „+C“.

1.3. Darlegung des Problems, Motivation für dessen Lösung

aus modernen Hochleistungspolymeren mit besseren Notlaufeigenschaften sowie höherer Verschleißfestigkeit und Laufruhe.
Im Vergleich zu Kugelumlaufspindeln, haben die Trapezgewindetriebe eine etwas niedrigere Positioniergenauigkeit und einen geringeren Wirkungsgrad dafür aber eine höhere Traglast und einen Kostenvorteil.
Aufgrund von gestiegenen Anforderungen an Trapezgewindetriebe interessieren sich die Produktanwender zunehmend für die Lebensdauer der Muttern. Allerdings führt die internationale Literaturrecherche zur Erkenntnis, dass noch keine Verschleißberechnungsmethode für Trapezgewinde veröffentlicht wurde.

1.3. Darlegung des Problems, Motivation für dessen Lösung

Der Mangel an förderlicher Literatur für direkte Beantwortung der Frage zum Verschleiß- und Temperaturverhalten von Trapezgewindetrieben ist der Beweggrund Trapezgewindetriebe wissenschaftlich zu untersuchen.

Übliche Werkstoffe von Leitmuttern sind schadstoffhaltige Metalle, was nicht mehr dem aktuellen gesellschaftlichen Gesundheits- und Umweltbewusstsein entspricht. Aus diesem Grund sollen die schadstoffhaltigen Leitmuttern durch schadstoffreduzierte oder polymerbasierte Leitmuttern ersetzt werden. Die Herausforderung dabei ist, die vielen verfügbaren, schadstoffreduzierten Werkstoffe auszuselektieren. In einigen Vorversuchen tritt eine reibungsbedingte thermische Instabilität mit Überschreitung zulässiger Betriebstemperatur der Reibwerkstoffe auf, wobei die Gewindegänge einer polymerbasierten Leitmutter schmelzen und abreißen können.

Im Laufe des Forschungsprojekts soll untersucht werden in wie weit sich die tribologischen Eigenschaften sicher bestimmen lassen und so der Laufwiderstand und der Energieaufwand im Betrieb optimiert werden kann.
1. Einleitung

1.4. Grundbegriffe wichtigster Verschleißeinflussfaktoren

Das Belastungskollektiv und die Systemstruktur sind die wichtigsten verschleißbeeinflussende Parametergruppen. Zum Belastungskollektiv gehören beispielsweise die Pressung, die Gleitgeschwindigkeit und die Temperatur. Unter einer Systemstruktur sind die Werkstoffpaarung oder die Schmierung sowie deren Eigenschaften zu verstehen [Czi10].

1.4.1. Temperatur

Es ist allgemein bekannt, dass die Temperatur die technischen Eigenschaften eines Werkstoffs deutlich beeinflussen kann. Die DIN 31652-3 gibt den Erfahrungsrichtwert für die höchstzulässige Temperatur des Radialgleitlagers bei Eigenschmierung in Höhe von 90°C an. Der Richtwert bezieht sich besonders auf die Pb- und Sn-Legierungen mit niedriger Schmelztemperatur.

Aufgrund der Buchsenform eines Radialgleitlagers empfiehlt sich die Annahme der Übertragbarkeit des angegebenen Richtwertes auf eine geometrisch ähnliche Gewindeleitmutter. Die Überschreitung der höchstzulässigen Betriebstemperatur kann die Eigenschaften der Reibwerkstoffe im Reibkontakt ändern, was sich im veränderten Verlauf der Verschleißkennlinie bemerkbar macht. Der Mechanismus der reibungsbedingten Temperatureinwirkung auf die Reibflächen wird nachfolgend beschrieben.

Basierend auf der Arbeit von Ratner et al [Rat64] stellt Lancaster [Lan69] eine Beziehung vor, die bei verschiedenen Stahl/Polymer-Tribopaarungen über eine Variation der Temperatur ermittelt wurde.

\[
\frac{V_I}{S_{hv}} = \frac{1}{\delta_B \cdot \varepsilon_B} \cdot \mu_G \cdot \frac{F_N}{H} \quad (1.1)
\]
1.4. Grundbegriffe wichtigster Verschleissinflussfaktoren

Sie beschreibt, dass der gleitwegbezogene Verschleiß V_V/S_{hp} dem Produkt aus Bruchspannung δ_B und Bruchdehnung ε_B umgekehrt proportional ist. Es wurde nachgewiesen, dass alle Variablen, außer der Normalkraft F_N, temperaturabhängig sind.

Die Beziehung beinhaltet die Härte H, aber der Therm $(\delta_B \cdot \varepsilon_B)^{-1}$ ist dominant. Somit weist eine Tribopaarung mit einem höheren Produktbetrag aus $(\delta_B \cdot \varepsilon_B)$ eine höhere Verschleißfestigkeit auf [Pre06].

Bemerkenswert ist, dass für den Verschleiß, bei der Glasübergangstemperatur eines Polymers, das Minimum vorhergesagt werden kann [Köh07].

Lancaster [Lan57] untersucht den Einfluss der Temperatur auf den Verschleiß bei metallischen Gleitpartnern. Unter der Variation der Temperatur von 20 °C bis 600°C lässt er einen Messingstift auf einem Ring aus Werkzeugstahl gleiten. Mit steigender Temperatur beobachtet er einen progressiv ansteigenden Verschleiß, der im Temperaturbereich von etwa 300°C bis 400°C steil abnimmt (Abb. 1.4.).

Die steile Verschleißabnahme begründet er mit der Bildung einer nicht metallischen Oberflächenschutzschicht, was auch mit dem ansteigenden elektrischen Kontaktwiderstand bestätigt wird.

Folglich kann eine hohe Reibkontakttemperatur, im Einklang mit chemischen Bestandteilen des Umgebungsmediums, tribochemische Reaktionen im Reibkontakt metallischer Reiboberflächen auslösen.

Die tribochemischen Reaktionspartikeln können an metallischen Reiboberflächen haften und als eine nicht metallische Oberflächenschutzschicht wirken.
Die Temperaturerhöhung begünstigt die tribochemischen Reaktionen zwischen den metallischen Oberflächen und der Umgebungsluft. Die gebildeten Triboxidschichten setzen den Übergangsbereich vom milden zum schweren Verschleiß herauf [Mat64]. Welsh [Wel57] stellt fest, dass bei Weichstahl durch die reibungsbedingte Temperaturerhöhung die Oberflächenhärtung stattfindet. Bei Stählen mit steigendem Kohlenstoffgehalt kommt es sogar leichter zur Umwandlung des Perlitgefüges in das Austenit- und Martensitgefüge [Mat64].

Bei stabilen Temperaturverhältnissen erweichen die Oberflächenschichten. Die tiefen Schichten können so erwärmt werden, dass in einigen Fällen einzelne Bestandteile des Werkstoffs koagulieren. Wenn die durch einzelne Blitze erhöhte Oberflächentemperatur genügend hoch ist, können sich die Legierungsbestandteile
1.4. Grundbegriffe wichtigster Verschleißeinfußfaktoren

auflösen. Nach der darauffolgenden und ebenso schnellen Abkühlung kann die Här tung der Oberflächenschicht erfolgen [Kra71].

Bei wiederholten reibungsbedingten Wärmeeinflüssen entstehen Wärmespannungen. Wegen unterschiedlicher Temperaturgradienten einzelner Werkstoffbestandteile, können diese Wärmespannungen die Reibfläche durch eine Ermüdungsrißbildung auflockern [Kra71]. Daraus folgt, dass die reibungsbedingten Wärmeeinflüsse die Gleitflächenemüdung begünstigen und somit die Verschleißintensität steigern können.

1.4.2. Pressung

1. Einleitung

Der Übergangsbereich zwischen den beiden annähernd linearen Bereichen verschiebt sich mit steigender Gleitgeschwindigkeit hin zu kleineren Normalkräften. Bei höherer Pressung ändert sich die Reibungszahl nur geringfügig und bei niedriger Pressung steigt die Reibungszahl an [Kra84].

Hirst/Lancaster [Hir56] drücken bei monotoner Laststeigerung einen Bolzen gegen die Mantelfläche eines rotierenden Zylinders und entdecken auch eine sprunghafte Veränderung des metallicen Verschleißes [Kra83].
1.4. Grundbegriffe wichtigster Verschleißeinflussfaktoren

Ganz ähnliche Ergebnisse erzielte Welsh [Wel65] am „gekreuzten Zylinder“ (Abb. 1.6.).

Abb. 1.6.: Einfluss der Pressung auf die Verschleißintensität nach Welsh [Kra71]

Nach Decker/Kabus [Dec14] ist die Gewindeflankenpressung p als eine Axialkraft F_A definiert, die sich auf die Projektionsflächen $d_2 \cdot \pi \cdot H_1$ belasteter Gangwindungen L_M/P_h verteilt (Abb. 1.7.).

$$p = \frac{P_h \cdot F_A}{L_M \cdot d_2 \cdot \pi \cdot H_1 \cdot k_t} \quad (1.2)$$

Die zulässige Flankenpressung p bei Kunststoffmuttern ist von der Gleitgeschwindigkeit abhängig und ist nach den Anhaltswerten von Decker/Kabus [DecK14] (Tabelle: 1) im Dauerbetrieb bei einer Gleitgeschwindigkeit $v = 30\text{m/min}$ nur $p = 2\text{ N/mm}^2$.

Bei den angegebenen Werkstoffen fehlt allerdings die genauere Spezifikation.
1.4. Grundbegriffe wichtigster Verschleißeinflussfaktoren

Tabelle 1: Anhaltswerte für zulässige Flankenpressung nach Decker/Kabus [DecK14]

<table>
<thead>
<tr>
<th>Werkstoffpaarung</th>
<th>Stahl Stahl</th>
<th>Stahl Grauguss</th>
<th>Stahl Bronze</th>
<th>Stahl gehärtet Bronze</th>
<th>Stahl Kunststoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauerbetrieb</td>
<td>8</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>Ausschneidbetrieb</td>
<td>12</td>
<td>8</td>
<td>15</td>
<td>22</td>
<td>3</td>
</tr>
<tr>
<td>Seltener Betrieb</td>
<td>16</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>4</td>
</tr>
</tbody>
</table>

1.4.3. Gleitgeschwindigkeit

![Verschleißintensität in Abhängigkeit von der Gleitgeschwindigkeit nach Kragelski [Kra83]](image)

Abb. 1.8.: Verschleißintensität in Abhängigkeit von der Gleitgeschwindigkeit nach Kragelski [Kra83]
1. Einleitung

Mit steigender Gleitgeschwindigkeit steigt die Temperatur. Dadurch entstehen fünf verschiedene Verschleißarten: elastischer Kontakt, plastischer Kontakt bei 100°C und elastischer Kontakt mit einer Oxidschichtbildung bei 240…570°C sowie Verschleiß mit Reibmartensitbildung bei 1180°C und Verschleiß durch Schmelzen [Kra83].

1.4.4. Zusammenfassung

Zusammenfassend kann die Verschleißfestigkeit einer Tribopaarung als eine Größe angesehen werden, die von temperaturabhängigen Werkstoffeigenschaften abhängt.

Bei gewissen Pressungsbereichen kann die Verschleißintensität einen tribooxidationsbedingten Höchst- und Kleinstwert einnehmen. Eine sprunghaft veränderliche Verschleißintensität deutet auf die Art der Reibungsverbindung hin, die von der elastischen zur plastischen Deformation und weiter zum Mikroschneiden und zur Rissbildung übergeht.

2. Stand der Forschung

Dieses Kapitel fokussiert sich auf die Abbildung des Kenntnisstandes über die Lebensdauerberechnungsmethoden sowie Methoden zur Durchführung thermischer Analysen von tribotechnischen Systemen. Hier werden Erfahrungen anderer Wissenschaftler über die wichtigsten Verschleißeinflussparameter zusammengefasst. Weil das tribologische Verhalten von Trapezgewinden noch nicht genügend erforscht ist, werden hier auch einige Tribosysteme näher betrachtet, die geometrische, thermische und dynamische Ähnlichkeiten mit einem Gewindetrieb aufweisen.

2.1. Methoden der Verschleißberechnung

Nachstehend sind die Vorstellungen zur Verschleißbeschreibung aufgeführt, die zu anwendungsorientierter Berechnungsmodellen ausgereift sind.

2.1.1. Empirisches Verschleißgesetz von Archard

$$ I_h = k_h \cdot F_N $$ (2.1)

In der Praxis muss die Verschleißintensität empirisch ermittelt werden. Die Normierung der Verschleißintensität für die Last ergibt den systemspezifischen Verschleißkoeffizient k_h.

Mit dem vereinfachten Gesetz des Gleitverschleißes von Archard alternativ

$$ h_V = h_{VE} + k_h \cdot F_N \cdot S_{hv} $$ (2.2)

kann bei definieter Belastung F_N nach einem kumulierten Gleitweg S_{hv} die Verschleißhöhe h_V berechnet werden.

Die Methode zur Berechnung des abrasiven Verschleißes von Rabinowicz [Rab95]

$$ V_v = \frac{\tan \theta}{\pi \cdot p} \cdot F_N \cdot S_{hv} = k_{abr} \cdot \frac{1}{p} \cdot F_N \cdot S_{hv} $$ (2.3)

2. Stand der Forschung

Weiterhin stellt Archard [Arc80] fest, dass die mit der Werkstoffhärte \(H \) erweiterte Beziehung für die adhäsiv bedingte Verschleißintensität

\[
I_n = \frac{k_h \cdot p}{(H)} \tag{2.4}
\]

sehr gut bei metallischen Tribopaaarungen anwendbar ist. Bei einem elastischen Reibkontakt spielt die Härte jedoch eine untergeordnete Rolle. Das Verschleißberechnungsmodell von Archard gilt als allgemeingültig. Aus verschiedensten Informationsquellen lässt sich schließen, dass diese Form der Verschleißberechnung sich weltweit vor allem in der Praxis durchgesetzt hat.

2.1.2. Verschleißtheorie von MacGregor

Für den sogenannten Nullverschleißfall gilt die Grenzbedingung:

\[
\frac{\tau_{\text{max}}}{\sigma_s} \leq \bar{y}_R \tag{2.5}
\]

Der dimensionslose Faktor \(\bar{y}_R \) ist experimentell zu ermitteln. Er erreicht einen Grenzwert \(\bar{y}_R = 0.2 \) im Bereich der Haft- und Mischreibung sowie \(\bar{y}_R = 0.54 \) im Bereich der Flüssigkeitsreibung. Wenn die Grenzbedingung für den sogenannten Nullverschleißfall erfüllt ist, dann kann die Nutzungsdauer \(N \) als eine Anzahl von Übergleitungen berechnet werden:

\[
N = \frac{S_k}{s_w} \cdot N_g \tag{2.6}
\]

Im Falle der Nichterfüllung der Grenzbedingung für den Nullverschleißfall, gilt der Verschleißfall. Für die Verschleißberechnung im Verschleißfall schlägt MacGregor folgende Beziehung vor:

\[
\tau^2_x \cdot 2000 \text{ Übergleitungen} = \tau^2_x \cdot N_x \tag{2.7}
\]

In der Praxis wird an einem Tribosystem die Schubspannung \(\tau_x \) variiert und jeweils nach 2000 Übergleitungen die Verschleißabtragung überprüft. Wenn die
2.1. Methoden der Verschleißberechnung

Verschleißabtragung der Höhe der Oberflächenunebenheiten entspricht, dann entspricht auch die vorgegebene Schubspannung \(\tau_x \) der gesuchten Schubspannung \(\tau_v \). Folglich kann für eine beliebige vorgegebene Schubspannung \(\tau_x \) die Nutzungsdauer \(N_x \) als eine Anzahl von Übergleitungen berechnet werden [Pol82]. Bei dieser allgemeingültigen Verschleißberechnungsmethode werden nur makrogeometrische Bedingungen berücksichtigt. In der Praxis ist sie zwar sehr übersichtlich, aber auch sehr ungenau. Die analytische Beschreibung von Zusammenhängen beim Verschleißvorgang erfolgt nicht [Fle80].

2.1.3. Molekular-mechanische Ermüdungstheorie von Kragelski

Die molekular-mechanische Ermüdungstheorie von Kragelski [Kra71] beschreibt die tribologischen Prozesse weitaus gründlicher. Sie basiert auf einfachen Vorstellungen und ist in der Praxis bequem in der Handhabung. Der lineare Verschleiß \(I_h \) gibt den Materialabtrag \(h_v \) an, der auf den Gleitweg \(S_{hv} \) bezogen ist.

\[
 I_h = \frac{h_v}{S_{hv}} \quad (2.8)
\]

oder

\[
 v_v = I_h \cdot A_a \cdot S_{hv} \quad (2.9)
\]

Der Ansatz ist so zu verstehen, dass das Verschleißvolumen \(v_v \) des weicheren Reibpartners von der nominellen Kontaktfläche \(A_a \) auf dem kumulierten Gleitweg \(S_{hv} \) abgetrennt wird.

Im Vergleich zu empirisch ermittelten Verschleißintensitäten weisen die theoretisch berechneten durchschnittlich eine \(\pm 2,5 \ldots 3 \)-fache Abweichung auf. Die Verschleißprozesse sind stochastisch, deshalb sind diese Abweichungen als zulässig anzusehen. Die allgemeingültige Verschleißberechnungsmethode von Kragelski setzt stationäre Verhältnisse und nur einen überwiegenden Verschleißmechanismus voraus. Sie gilt nur für eine nicht geschmierte Tribopaarung und berücksichtigt keine physikalisch-chemischen Prozesse an den Reiboberflächen [Bre88].
2. Stand der Forschung

2.1.4. Energiespeicherhypothese von Tross und Fleischer

Nach zahlreichen Verschleißversuchen an verschiedensten Tribosystemen und darauf folgender systematischer Versuchsauswertung, definieren Tross/Fleischer [Fle80] [Fle04] [Sad08] [Sad09] einen Zusammenhang zwischen der Reibungsarbeit W_R und dem Verschleißvolumen V_V.

\[V_V = \frac{W_R}{e_R^*} \quad (2.10) \]

Durch eine Vereinigung der molekular-mechanischen Ermüdungstheorie mit der energetischen Verschleißgrundgleichung konnte eine Beziehung zur Bestimmung der sogenannten scheinbaren Reibungsenergiedichte e_R^* entwickelt werden.

\[e_R^* = \frac{n_k}{V_V} \cdot \frac{\bar{\varepsilon}_R}{1 + \zeta_R(n_k - 1)} \quad (2.11) \]

Unter dem Begriff „scheinbare Reibungsenergiedichte“ ist eine analytisch genau berechnete Zahl zu verstehen, die in der Praxis aufgrund des stochastischen Charakters der Verschleißvorgänge nur als ein Richtwert angesehen werden kann.

In der Praxis werden zur Berechnung der kritischen Anzahl der übergleitungsbedingten Energieimpulse n_k näherungsweise die Werte aus der Wöhlerkurve zugrunde gelegt. Die mittlere Bruchenergiedichte $\bar{\varepsilon}_R$ kann näherungsweise mit den aus dem Zugversuch gewonnenen Werten und einer vereinfachten Rechnung bestimmt werden. Die Energieakkumulationszahl ζ_R und die Verschleißzahl V_V müssen jedoch nach Erfahrungswerten geschätzt oder empirisch ermittelt werden [Fle80] [Kuh09] [Sad07].

2.1.5. Firmen-/Produktspezifische Verschleißmodelle für Trapezgewinde

2.1.6. Andersartige Tribosysteme mit gleitender Trapezgeometrie

Es sind einige Tribosysteme bekannt, die wie ein Trapezgewinde auch eine Trapezgeometrie mit gleitender Linienberührung aufweisen. Diese sind zum Beispiel die Schneckengegetrieben und die Zahn-/Keilwellenverbindungen.

2. Stand der Forschung

2.2. Thermische Analysemethoden

2.2.1. Berechnungsmethoden der Wärmeableitung

Wärme entsteht im Reibkontakt zwischen den beiden Reibkörpern. Durch die Wärmeleitung wird die Wärme anteilig über die Reibkörper an die Umgebung abgegeben. Mit diesem Phänomen setzen sich Bowden/Riedler [Bow35] auseinander. Sie benutzen Tribokörper als Thermoelemente um die Aufteilung der Wärmestrome und die Temperaturvorgänge zu untersuchen.

Jaeger [Jae42] erarbeitet die grundlegenden Methoden zur analytischen und näherungsweisen Ermittlung von reibungsbedingten Wärmeaufliegen in den aufeinander gleitenden Tribokörpern. Dabei nimmt er an, dass der Wärmestrom stationär ist und die Reibkontakttemperatur an beiden Reibkörpern (Reitkörper 1 und Gegenkörper 2) den gleichen Wert hat. Er nimmt an, dass die Wärmestromaufteilung und die Wärmeleitfähigkeit in einem Verhältnis zueinander stehen.

\[Q_1 = \frac{\lambda_1 \cdot Q}{\lambda_1 + \lambda_2} \quad \text{und} \quad Q_2 = \frac{\lambda_2 \cdot Q}{\lambda_1 + \lambda_2} \quad \text{mit} \quad Q = Q_1 + Q_2 \quad (2.12) \]

Dieser Zusammenhang ist nur bei niedrigerer Gleitgeschwindigkeit gültig. Bei höherer Gleitgeschwindigkeit ist die Abkühlwirkung des Reitkörpers durch kühle Gleitwegfläche des Gegenkörpers zu berücksichtigen.

Aufbauend auf den Ergebnissen von Jaeger [Jae42] entwickeln Bowden/Tabor [Bow59] eine näherungsweise Berechnungsmethode zur Ermittlung des anteiligen Wärmestroms \(Q \) in einem dünnen Stab für das „Stift/Scheibe-Tribosystem“.

\[\alpha Q = 2\pi r \alpha_w \int_0^\infty (T - T_U) \, dx \quad \text{mit} \quad \alpha = \frac{\lambda_1}{\lambda_1 + \lambda_2} \quad (2.13) \]

Ihre Ergebnisse basieren auf den Annahmen, dass die Reibung nahezu vollständig in die Wärme übergeht. Dabei erfolgt der Wärmeübergang zwischen der ausstrahlenden Oberflächentemperatur \(T \) und der Umgebungstemperatur \(T_U \).

Diese grundlegenden Erkenntnisse sind bis heute noch aktuell und finden in verschiedenen Tribosystemen ihre Anwendung. Für die relativ schnellgleitenden...
2.2. Thermische Analysemethoden

Leitmuttern können sie wegen fehlender Integration der Konvektionseffekte nicht berücksichtigt werden. Die Leitmuttern haben eine große geometrische Ähnlichkeit mit Radialgleitlagern durch die Form einer Buchse.

\[Q_1 = \frac{\lambda_1 \cdot K_1 \cdot Q}{\lambda_1 \cdot K_1 + \lambda_2 \cdot K_2} \quad \text{und} \quad Q_2 = \frac{\lambda_2 \cdot K_2 \cdot Q}{\lambda_1 \cdot K_1 + \lambda_2 \cdot K_2} \]

(2.14)

Er führt eine systemspezifische Wärmebilanz durch und weist darauf hin, dass die Ergebnisgleichungen nicht direkt auf andere Tribosysteme übertragbar sind. Grund dafür ist die Gestaltabweichung der Tribokörper sowie abweichende Umgebungseinflüsse. Die Konvektionsfaktoren \(K_1 = 3/4 \) und \(K_2 = 7/120 \) übernimmt er aus [Erh85].

Laut Erhard/Strickle [Erh85] verlässt die Reibungswärme das Querlager über die Oberfläche der Lagerschale

\[Q_1 = \frac{d_w \cdot B \cdot \pi}{s_K \cdot 10^3} \cdot \lambda_1 \cdot K_1 \cdot \Delta T \]

(2.15)

und über die Welle.

\[Q_2 = \frac{d_w \cdot \pi}{2 \cdot 10^3} \cdot \lambda_2 \cdot K_2 \cdot \Delta T \]

(2.16)

mit

\[\Delta T = \frac{p \cdot v \cdot \mu}{\pi \cdot \left(\frac{\lambda_1 \cdot K_1}{s_K} + \frac{\lambda_2 \cdot K_2}{2 \cdot B} \right) \cdot 10^3} \]

(2.17)

Die Formeln gelten für die Querlager-Konstruktionen mit einem Nenndurchmesser der Stahlwelle von 20 bis 60 mm und für Kunststoffe mit einer Wärmeleitfähigkeit von 0,24 W/m·K bei einer Umgebungstemperatur unter 80 °C. Aufgrund von systemspezifischen Konvektionsfaktoren \(K_1 \) und \(K_2 \) sind auch diese Ansätze zu komplex und auf eine Leitmutter nicht direkt übertragbar.

Bartz [Bar93] nimmt an, dass die Wärme über das Gleitlager mit Ölumpf und guter innerer Benetzung des Lagergehäuses nur durch Konvektion zur Umgebungsluft abgeführt wird. Dazu verwendet er das Fouriersche Gesetz.

\[Q_1 = \alpha_w \cdot A_L \cdot (T_m - T_U) \]

(2.18)

Dabei setzt er bei der Berechnung der Temperaturdifferenz die mittlere Lagertemperatur \(T_m \) ein. Die wärmeabgebende Oberfläche \(A_L \) im Maschinenverbund sowie die Wärmeübergangszahl \(\alpha_w \) sind schwierig zu ermitteln. Deshalb werden näherungsweise \(A_L = 15 \ldots 20 \cdot B \cdot D \) und \(\alpha_w = 7 + 12 \cdot \sqrt{W} \) angenommen. Da die
2. Stand der Forschung

Maschinen immer eine Luftbewegung erzeugen, wird mindestens \(w = 1,2 \text{m/s} \) empfohlen.

Es ist eine weitere Berechnungsmethode [Lyk67] [Eld58] bekannt, mit der es möglich ist den anteiligen Wärmestrom zu bestimmen.

\[
\frac{Q_1}{Q_2} = \frac{\lambda_1 \cdot c_1 \cdot \rho_1}{\lambda_2 \cdot c_2 \cdot \rho_2} \quad (2.19)
\]

2.2.2. Methoden zur Beschreibung thermischer Reibleistungsfähigkeit

Die in das Tribosystem induzierte Wärmeleistung muss kleiner als dessen Wärmeabgabefähigkeit sein. Anderenfalls kann es zu einem Wärmestau und folglich zu einer Instabilität im Verschleißverlauf führen.
Nach Ehrhard/Strickle [Erh85] ist der Richtwert für das Maß der Gleitreibbelastung der sogenannte „\(p v \) -Wert“, der als das Produkt aus Flächenpressung \(p \) und Gleitgeschwindigkeit \(v \) definiert ist und dessen Maximalwert beim Aussetzbetrieb bis zu 50% höher angesetzt werden kann. Der \(p v \) -Wert hat die Einheit „N/mm²·m/s“ oder anders geschrieben „W/mm²“. Aus der Fourierschen Wärmeleitungsgleichung für den eindimensionalen Fall ist der Begriff der Wärmestromdichte mit der Einheit „W/mm²“ bekannt.
Unter der Annahme, dass die Reibungsarbeit \(W_r \) nahezu vollständig in die Wärmeenergie übergeht, lässt sich für die Spindel die Wärmestromdichte \(q_s \) als die Wärmeenergie definieren, die in die Spindeloberfläche \(A_s \) während einer Hubdauer \((t_h + t_s)\) induziert wird.
2.2 Thermische Analysemethoden

Es ist ersichtlich, dass die Wärmestromdichte q_S dem p_v-Wert ähnelt.

$$q_S = \frac{W_R}{(t_H + t_S) \cdot A_S} = \alpha_w \cdot (T_S - T_U) \quad (2.20)$$

Der erste Bruchterm entspricht aber nicht der Pressung p, weil die Konvektionsfläche der Spindel A_S keine Krafteinleitungsfläche der Axialkraft F_A ist. Der zweite Bruchterm beinhaltet die Stillstandszeit t_S, was auch nicht der reinen Gleitgeschwindigkeit v entspricht. Der empirisch ermittelte p_v-Wert und die Wärmestromdichte q_S haben die gleiche Einheit und beschreiben die thermische Leistungsfähigkeit eines Tribosystems. In Bezug auf eine Gewindespindel ist die Beschreibung der thermischen Leistungsfähigkeit mit dem p_v-Wert allerdings nicht sinnvoll.

2.2.3 Berechnungsmethode des Wärmeübergangskoeffizienten

![Diagram](image)

Abb.2.1: Zusammensetzung der spezifischen Wärmeströme aus Grundrohranteil und Rippenanteil nach Wagner [Wag11]
2. Stand der Forschung

Mit dem Ansatz:

\[\pi \cdot d_1 \cdot t \cdot \bar{a} \cdot (\Delta T) = \pi \cdot d_1 \cdot \delta_R \cdot \alpha_R \cdot (\Delta T) + \pi \cdot d_1 \cdot (t - \delta_R) \cdot \alpha_G \cdot (\Delta T) \]

erhält man die Gleichung für den mittleren äquivalenten Wärmeübergangskoeffizienten \(\bar{a} \)

\[\bar{a} = \alpha_R \cdot \frac{\delta_R}{t} + \alpha_G \cdot \left(1 - \frac{\delta_R}{t}\right) \] \hspace{1cm} (2.22)

mit der Wärmeübergangszahl der Grundfläche des Rohres \(\alpha_G \)

\[\alpha_G = \frac{Nu_R \cdot \lambda_L}{\pi \cdot d} \] \hspace{1cm} (2.23)

und mit der scheinbaren Wärmeübergangszahl am Rippenfuß \(\alpha_R \)

\[\alpha_R = \sqrt[2]{\frac{2 \cdot \alpha_G \cdot \lambda_R}{\delta_R \cdot \lambda_R}} \cdot \tanh \left(\sqrt[3]{\frac{2 \cdot \alpha_G}{\delta_R \cdot \lambda_R}} \cdot h_3 \right) \] \hspace{1cm} (2.24)

\[Nu_R = 0,3 + \sqrt{Nu_{R,lam}^2 + Nu_{R,tur}^2} \] \hspace{1cm} (2.25)

mit einem laminaren Strömungsanteil \(Nu_{R,lam} \)

\[Nu_{R,lam} = 0,664 \cdot \sqrt{Re} \cdot \sqrt[3]{Pr} \] \hspace{1cm} (2.26)

und mit einem turbulenten Strömungsanteil \(Nu_{R,tur} \)

\[Nu_{R,tur} = \frac{0,037 \cdot Re^{0,8} \cdot Pr}{1 + 2,443 \cdot Re^{-0,1} \cdot (Pr^{2/3} - 1)} \] \hspace{1cm} (2.27)

für den Gültigkeitsbereich \(10 < Re < 10^7 ; 0,6 < Pr < 1000 \)

Die Reynoldszahl \(Re \) berechnet sich wie folgt

\[Re = \frac{w \cdot d}{v_L} \] \hspace{1cm} mit \(w = \pi \cdot d \cdot n_s \) \hspace{1cm} (2.28)

Sollte zwischen einer Gewindespindel und einem Rippenrohr eine Ähnlichkeit vorliegen, dann kann der mittlere äquivalente Wärmeübergangskoeffizient \(\bar{a} \) der Wärmeübergangszahl \(\alpha_w \) aus dem Fourierschen Gesetz entsprechen.
2.2.4. Berechnungsmodelle zur Reibkontakttemperatur

Berechnungsmodelle zur Bestimmung der Reibkontakttemperatur bei Trapezgewinden sind nicht bekannt. Daher ist es nützlich sich die vorhandenen Modelle für andere Tribosysteme anzuschauen um den Stand der Kenntnisse zu vervollständigen.

Blok [Blo37] definiert die Kontakt-Grenzflächentemperatur T_K als die Summe aus der Volumentemperatur T_V und der Blitztemperatur T_R.

$$ T_K = T_V + T_R $$ \hspace{1cm} (2.29)

mit

$$ T_R = \frac{1,11}{S_w \cdot \sqrt{B_K}} \cdot \frac{\mu_G \cdot F_N \cdot (v_1 - v_2)}{\sqrt{\lambda_1 \cdot \rho_1 \cdot c_1 \cdot v_1 + \sqrt{\lambda_2 \cdot \rho_2 \cdot c_2 \cdot v_2}}} \hspace{1cm} (2.30) $$

Seine Hypothese ist für die Berechnung der Temperatur in einem linienförmigen Reibkontakt anwendbar [Czi10]. Dabei sind entsprechende Geometriegrößen durch Kontaktlänge S_w und Kontaktbreite B_K beschrieben.

Später entwickelt Archard [Arc58] ein Modell für einen Punktkontakt zweier gleitender Körper, die sich an einem Rauheitshügel berühren. Da sein Modell sich auf einen Mikrorauheitskontakt bezieht, ist es in der Praxis nur schwer handhabbar.

$$ T_V = \frac{\mu_G \cdot F_N \cdot (v_1 - v_2)}{A_a} \cdot \left[\frac{1}{\frac{\lambda_1}{l_1} + \frac{\lambda_2}{l_2}} \right] + T $$ \hspace{1cm} (2.31)

Diese Formel ist zur Berechnung der Blitztemperatur T_R äquivalent anzuwenden. Bei der Berechnung der Blitztemperatur beziehen sich die Wärmendiffusionswege sowie die Temperatur der Wärmesenke auf die Mikrorauheitskontakte und sind daher sehr schwierig zu bestimmen [Czi10].

Jaeger [Jae42] entwickelt ein Modell zur Berechnung der Gleitflächenentemperatur T_K für eine quadratische Berührungsfläche mit der Seitenlänge $2l_B$ und gibt das Ergebnis an, das sich auf hohe Geschwindigkeit bezieht.

$$ T_K = \sqrt{\frac{\lambda_2}{\rho_2 \cdot c_2}} \cdot \mu_G \cdot F_N \cdot (v_1 - v_2) \cdot \left(3,76 \cdot l_B \cdot J \cdot \left\{1,125 \cdot \frac{\lambda_1}{\rho_2 \cdot c_2} + \frac{\lambda_2}{\rho_2 \cdot c_2} \cdot \sqrt{l_B \cdot (v_1 - v_2)}\right\}\right) + T_V $$ \hspace{1cm} (2.32)
2. Stand der Forschung

Dabei wird berücksichtigt, dass der Reitkörper von der entgegengleitenden Oberfläche des Gegenkörpers gekühlt wird [Jae42], [Bow59].

Leitmuttern und Radialgleitlager haben beide die Form einer Buchse. Weil die Buchsen an ihren Reibflächen permanent im Eingriff sind, haben sie eine reibungsbedingte unbewegte Wärmequelle. Für Gleitlager sind die Modelle zur Berechnung der Gleitflächentemperatur vorhanden, die in der Praxis angewendet werden.

Nach Lancaster [Lan73] verhält sich die Reibkontaktemperatur T_K bei den Trockenlauflagern proportional zur dissipierten Wärmeenergie.

$$T_K = T_U + C_t \cdot \mu_G \cdot F_N \cdot (v_1 - v_2) \quad (2.33)$$

Die Konstante C_t charakterisiert die thermische Leistungsfähigkeit der Lagerwerkstoffe und die Geometrie der Konstruktion [Czi10].

$$T_K = T_U + \left(1,15 + \frac{T_m}{170}\right) \cdot (T_m - T_U) \quad (2.34)$$

mit mittlerer Lagertemperatur T_m

$$T_m = \frac{318,3 \cdot p \cdot (v_1 - v_2)^x}{\left(\frac{0,18}{s_K} + \frac{1,36}{B}\right) \cdot \mu_G \cdot \rho_R} \quad (2.35)$$

$T_U + \frac{318,3 \cdot p \cdot (v_1 - v_2)^x}{\left(\frac{0,18}{s_K} + \frac{1,36}{B}\right) \cdot \mu_G \cdot \rho_R}$

Die angegebenen Formeln beziehen sich auf Radialgleitlager mit einem Durchmesser der Stahlwelle von 20…60mm und mit einer Wärmeleitfähigkeit des Polymers von 0,24 W/K sowie mit einer Umgebungstemperatur von unter 80°C [Erh85]. Hier wird allerdings keine genauere Spezifikation der Werkstoffe angegeben.
3. Zielsetzung der Arbeit, Hypothesen und Versuchsplanung

Ausgehend von beschriebenem Stand der Technik und des Wissens, werden in diesem Kapitel konkrete Ziele präzisiert sowie die wissenschaftlichen Methoden dargelegt. Zudem werden einige Hypothesen zur Verschleißberechnung von Trapezgewindetrieben aufgestellt und verwendete Prüfstandstechnik beschrieben.

3.1. Wissenschaftliche Vorgehensweise

Die Arbeitsplanung unterliegt einer Struktur, die in der Abbildung (Abb. 3.1.) dargestellt ist.

Das Hauptziel dieser Arbeit besteht in der Herleitung eines anwendungsorientierten Lebensdauermodells für Trapezgewindetriebe. Da die Trapezgewindetriebe einerseits durch reibungsbedingte Wärme und andererseits auf Gleitverschleiß beansprucht werden, fokussiert sich die Untersuchung auf gleichzeitige Betrachtung des Temperaturverhaltens und Verschleißverhaltens.
3. Zielsetzung der Arbeit, Hypothesen und Versuchsplanung

Ausgehend vom Stand der Technik und der Kenntnisse wird das Temperaturverhalten der Trapezgewindetriebe über die Wärmetheorie von Fourier/Newton mit den Formeln 2.20 bis 2.28 und das Verschleißverhalten über das Verschleißgesetz von Archard mit der Formel 2.1 beschrieben. Im Vergleich zum pv-Wert, berücksichtigt die Beschreibung der thermischen Leistungsfähigkeit der Trapezgewindetriebe über die Wärmetheorie von Fourier/Newton weitere Einflussgrößen. Im Gegensatz zu den anderen bekannten Verschleißmodellen zeichnet sich das empirische Verschleißgesetz von Archard durch die Paxistauglichkeit aus.

Anschließend können die dominanten Einflussgrößen in das Temperatur- und Verschleißmodell einfließen sowie Hinweise für Betrieb und Wartung der Trapezgewindetriebe liefern.
3.2. Methode der Einflussgrößenbestimmung

Eine effiziente Versuchsplanung erfordert eine sinnvolle Variation von relevanten Einflussgrößen. Die Herleitung von relevanten Einflussgrößen wird hier systematisch und strukturiert über die Ursache-Wirkung-Analyse im Ishikawa-Diagramm (Abb. 3.2.) durchgeführt.

![Ishikawa-Diagramm](image)

Abb. 3.2.: Herleitung relevanter Einflussgrößen

3. Zielsetzung der Arbeit, Hypothesen und Versuchsplanung

Nenndurchmesser und die Gleit- beziehungsweise Fluidgeschwindigkeit beschreiben die Wärmeabgabefähigkeit des tribologischen Systems.

3.3. Hypothesen

Erste Hypothese: Die Pressung ist sowohl für die Temperatur als auch für den Verschleiß ein dominanter Einflussfaktor.

Die Annahme wird dadurch begründet, dass mit der höheren Pressung und somit höheren Anzahl an Mikrokontakten die Wahrscheinlichkeit der Verschleißteilchenbildung erhöht wird und durch die Deformation der vielen Mikrokontakte die deformationsbedingte Wärmeenergie ansteigt.

Zweite Hypothese: Die Gleitgeschwindigkeit wirkt auf die Temperatur dominant und auf den Verschleiß eher rezessiv.

Diese Hypothese beruht auf der Annahme, dass die reibungsbedingte Wärmeleistung sowie der Wärmeübergang von der Spindeloberfläche an das unbewegte Umgebungsmedium von der Drehzahl der Spindel abhängen. Wenn die Gleitgeschwindigkeit als bedeutender Einfluss auf die Temperatur betrachtet wird, bleiben im unterkritischen Temperaturbereich die Werkstoffeigenschaften überwiegend konstant und die stationäre Verschleißphase stabil.

Dritte Hypothese: Der Gewindenenndurchmesser wirkt auf die Temperatur dominant und auf den Verschleiß rezessiv.

Vierte Hypothese: Das Eingriffsverhältnis wirkt auf die Temperatur sowie auf den Verschleiß in der Einlaufphase dominant und in der stationären Verschleißphase rezessiv.

Hier gründet sich die Annahme der Proportionalität des Eingriffsverhältnisses zur Konvektionsfläche und somit zum Wärmeverhalten des Trapezgewindetriebes. Bei einem größeren Eingriffsverhältnis laufen die Gleitflächen vermutlich schneller ein und konvergieren an einen Gleitflächenzustand, der in der stationären Phase aufgrund von konstanter Oberflächentransformation nahezu unverändert bleibt.
3.4. Versuchsplanung

Fünfte Hypothese: Die Gleitflächencharakteristik, hier besonders die scharfkantigen Oberflächenfehler auf den Flanken von Spindeln, sind sowohl für die Temperatur als auch für den Verschleiß ein dominanter Einflussfaktor.

Es wird angenommen, dass durch die abrasive Scherwirkung der scharfkantigen Oberflächenfehler die Verschleißintensität und die reibungsbedingte Temperatur steigen.

Sechste Hypothese: Werkstoffe mit identischen technischen Eigenschaften, insbesondere in Bezug auf Dichte, Werkstoffhärte und zulässige Betriebstemperatur, weisen ein identisches Verschleißverhalten auf.

3.4. Versuchsplanung

Zur ersten, zweiten und dritten Hypothese:
Um die erste, die zweite und die dritte Hypothese zu prüfen, sollen die Versuche möglichst effizient nach einem teilfaktoriellen Versuchsplan durchgeführt werden. In der Abbildung (Abb. 3.3.) ist ein Versuchsplan als ein dreidimensionaler Raum mit der Varianz der Pressung, des Gewindenendurchmessers und der Gleitgeschwindigkeit dargestellt.

![Versuchsplan zu Pressung, Nenndurchmesser, Gleitgeschwindigkeit](image)

Abb. 3.3.: Versuchsplan zu Pressung, Nenndurchmesser, Gleitgeschwindigkeit

Der Versuchsplan beinhaltet einen Zentralpunktversuch (rot dargestellt) und mehrere Sternpunktversuche, die mit dem statistisch abgesicherten Zentralpunktversuch zu vergleichen sind. Weil das Temperatur- und Verschleißverhalten der Trapezgewindetriebe eher bei höheren Lastkollektiven interessant ist, liegt der Zentralpunktversuch nicht im Zentrum. Der Referenzwert für die Gleitgeschwindigkeit
3. Zielsetzung der Arbeit, Hypothesen und Versuchsplanung

liegt im thermisch sichereren Bereich bei 22,6 m/min. Der Referenzwert für die Pressung von 2 N/mm² bei einer Polymer/Stahl-Reibpaarung entspricht dem Richtwert aus [DecK14]. Der Gewindendurchmesser von 20mm ist der Referenzdurchmesser, weil er erfahrungsgemäß sehr häufig in der Automatisierungstechnik und in der Lehrliteratur eingesetzt wird.

Zur vierten Hypothese:
Zur Untersuchung der vierten Hypothese ist der dreidimensionale Versuchsplan in der Abbildung (Abb. 3.4.) vorgesehen. Die rote Ebene beziehungsweise die roten Punkte entsprechen den Referenzversuchen für das Eingriffsverhältnis mit dem Referenzwert (hier 0,0373). Die schwarzen Punkte entsprechen den Versuchen mit varierten Eingriffsverhältnissen, die mit dem Referenzwert zu vergleichen sind.

![Versuchsplan zu Eingriffsverhältnis](image)

Die Angaben, beispielsweise „Tr20x4/ZX530/C15+C“ beschreiben die eingesetzte Spindelgröße (Tr20x4), den Werkstoff der Mutter (ZX530) sowie den Werkstoff der Spindel mit derer Zustandsbezeichnung (C15+C).
Zur fünften Hypothese:
Für die fünfte Hypothese werden Spindeln mit drei verschiedenen Gleitflächencharakteristiken untersucht.
Die Spindeln tragen eine Zustandsbezeichnung „+C“ für den kaltgezogenen und „+SH“ für den zusätzlich geschälten Zustand des Rohlings, aus dem die Spindel gerollt wurde (vgl. Kap. 1.2.).
Da der Zustand „+C“ preislich günstiger ist und häufiger verbaut wird, ist dieser Zustand als der Referenz-Zustand zu betrachten.
Es ist anzumerken, dass einige Spindeln mit der Zustandsbezeichnung „+C“ sichelförmige Oberflächenfehler aufweisen und müssen daher, wie sich herausgestellt hat, in der Auswertung gesondert berücksichtigt werden. Bilder zu sichelförmigen Oberflächenfehlern sind im Kapitel 5.6. in der Abbildung (Abb. 5.12.) zu finden.

Zur sechsten Hypothese:

<table>
<thead>
<tr>
<th>Polymer-Mutter</th>
<th>Stahl-Spindel</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZX530</td>
<td>E295+C</td>
</tr>
<tr>
<td>Murythal-C</td>
<td>C15+C</td>
</tr>
</tbody>
</table>

Abb. 3.5.: Versuchsplan zu Reibpaarung
3. Zielsetzung der Arbeit, Hypothesen und Versuchsplanung

3.5. Prüfstandstechnik

Für die experimentellen tribologischen Untersuchungen an Trapezgewindetrieben wird im Labor für Maschinenelemente der Hochschule Hannover ein Prüfstand (Abb. 3.6.) aufgebaut.

Der Prüfstand besteht im Wesentlichen aus einer Trapezgewindespindel aus Stahl nach DIN 103. Diese wird mit einer einstellbaren geregelten Drehzahl angetrieben und bewegt so die nicht drehende, geführte Mutter, auf die eine definierte Belastung wirkt. Es können das Antriebsdrehmoment, die örtliche Oberflächentemperatur der Spindel, die Kerntemperatur der Mutter und die Verschleißhöhe als axiale Wegdifferenz zum Neuzustand messtechnisch erfasst werden.

Abb. 3.6.: Aufbauprinzip des Trapezgewindeprüfstandes
4. Temperaturverhalten von Trapezgewindetrieben

4.1. Problembeschreibung

Je nach Anwendungsfall kommen in Trapezgewindetrieben unterschiedliche Gewindendenndurchmesser zum Einsatz. In Bezug auf das Wärmeverhalten führt eine Variation des Gewindendenndurchmessers zu einer geometrisch bedingten Veränderung der Konvektionsfläche und folglich des Wärmeabgabeverhaltens. Eine Variation der Gleitgeschwindigkeit führt zur Veränderung der Relativgeschwindigkeit zwischen der Spindel und dem Umgebungsmedium, was ebenfalls eine Veränderung in der Wärmecharakteristik der Gewindetriebe verursacht.

4.2. Ziel

4. Temperaturverhalten von Trapezgewindetrieben

4.3. Methode

Diese Untersuchung soll mit drei verschiedenen Gewindendenndurchmessern durchgeführt werden, damit die Gültigkeit des Modells bei verschiedenen Gewindegrößen nachgewiesen werden kann. Die am häufigsten verwendeten Nenndurchmesser im Bereich der Automatisierungstechnik haben eine Größenordnung von circa 10…30mm. Aus diesem Grund werden drei Trapezgewindetriebe mit den Gewinden Tr24x5, Tr20x4, Tr14x3 untersucht. Dazu werden die Temperaturen von Trapezgewindespindeln analytisch mittels einer Simulation und empirisch über die praktischen Versuche ermittelt und miteinander verglichen.

Die ausgewählten Pressungen, Gleitgeschwindigkeiten sowie Umgebungstemperaturen und Reibwerkstoffpaarungen sind für alle drei Gewindendenndurchmesser-Variationen identisch (vgl. Versuchsplan im Kapitel 3, Abb. 3.3.). Der Gewindendenndurchmesser Tr20x4 soll als eine Referenzgröße definiert werden, da er in der Automatisierungstechnik erfahrungsgemäß am häufigsten eingesetzt wird. Der Gewindendenndurchmesser Tr20x4 soll zusätzlich bei vier verschiedenen Gleitgeschwindigkeiten 8,4m/min, 16,9m/min, 22,6m/min, 25,4m/min untersucht werden, wobei die Gleitgeschwindigkeit 22,6m/min als Referenz festgelegt wird. Bei dieser Referenz-Gleitgeschwindigkeit können die Versuche besonders schnell und ohne einer Überschreitung von kritischen Bereichen durchgeführt werden. Die anderen drei Gleitgeschwindigkeiten stellen eine Mindestanzahl an drei ähnlich abstehenden Punktversuchen dar. Die Kommazahlen ergeben sich aus der Umrechnung von ganzzahligen Drehfrequenzen einer Tr20x4-Referenzspindel.

4.4. Versuchsbeschreibung

Der Prüfstand für die Versuche besteht aus austauschbaren Trapezgewindetrieben mit drei unterschiedlichen Spindelabmessungen. Die Trapezgewindetriebe mit den Trapezgewinden Tr20x4 sind für die Referenzversuche bestimmt. Die anderen beiden Trapezgewindetriebe, mit den Trapezgewinden Tr24x5 und Tr14x3, sind für eine exemplarische Vergleichbarkeit der Ergebnisse mit dem Referenzversuch vorgesehen, um die Übertragbarkeit des Temperaturverhaltens auf andere Trapezgewindeabmessungen zu bestätigen.

Alle Versuche werden für den Betrieb nach dem Versuchsplan (Abb. 3.3.) mit identischen Eingriffsverhältnissen, Pressungen und Gleitgeschwindigkeiten eingerichtet. Lediglich bei den Referenzversuchen mit dem Trapezgewinde Tr20x4 wird zusätzlich zur höheren Variation der Wärmestromdichte systematisch die Pressung gedrittelt und das Eingriffsverhältnis über dieHubhöhenvariation verdoppelt. Die Versuche werden mit den Polymer-Muttern aus ZX530 und Stahlspindeln aus E295+SH durchgeführt.
Um das Wärmeverhalten auch auf metallischen Reibpaarungen zu testen, werden die Referenzversuche mit dem Trapezgewinde Tr20x4 mit Muttern aus Rotguss-Bronze G-CuSn7ZnPb und Stahlspindeln aus E295+SH bei identischen Betriebsbedingungen wiederholt.

Eine indirekte Messung der Wärmestromdichte erfolgt über die Messung des Antriebsdrehmoments bei vorgegebenem Lastkollektiv nach dem Versuchsplan (Abb. 3.3.). Für die Erfassung des Antriebsdrehmoments ist eine Drehmomentmesswelle zwischen der Spindel und dem Antriebsmotor eingebaut. Die Drehmomentmesswelle „T22“ des Herstellers „Hottinger Baldwin Messtechnik GmbH“ hat eine Linearitätsabweichung von ±0,3%.

4.5. Vergleich der simulierten Spindeltemperatur mit den Versuchsergebnissen

In den Abbildungen (Abb. 4.1.) (Abb. 4.2.) ist die relative Spindeltemperatur über der Wärmestromdichte aufgetragen und deren Zusammenhang mit dem Wärmeverhalten von Trapezgewindetrieben verdeutlicht. Dazu wurde eine Differenz zwischen der Spindeloberflächentemperatur und der Umgebungstemperatur gebildet und für die Wärmestromdichte normiert. Die eingetragenen Werte sind die Proportionalitätsfaktoren, die sich aus der Messung und aus der Rechnung ergeben. Die Proportionalitätsfaktoren sind Wärmewiderstände R_w, die dem Kehrwert der
4. Temperaturverhalten von Trapezgewindetrieben

Wärmeübergangszahl α_w entsprechen und die Wärmecharakteristik von Trapezgewindetrieben beschreiben.

Abb. 4.1.: Empfindlichkeit des Wärmewiderstandes auf die Gleitgeschwindigkeit
In der Abbildung (Abb. 4.1.) ist es ersichtlich, dass die gemessenen und die berechneten Wärmewiderstände der Spindel Tr20x4 nahe beieinander liegen. Die berechneten Werte weisen einen linearen Charakter auf. Die Messwerte weisen jedoch typische Streubereiche auf.
Mit steigender Gleitgeschwindigkeit wird die Steigung des Wärmewiderstandes flacher und somit die Wärmeabgabefähigkeit des Trapezgewindetriebes höher.

Bei identisch eingestellten Betriebsparametern sind die Mess- und Rechenergebnisse erwartungsgemäß in einem konzentrierten Streubereich zu erkennen. Die Ergebnisse lassen sich auch über das gesamte Wärmestromdichte-Gefälle darstellen, in dem man beispielsweise die Pressung oder die Hubhöhe variiert.

Die Simulations- und Messwerte, die im Diagramm bei einer Gleitgeschwindigkeit 22,6m/min im Bereich der Wärmestromdichte von circa 300W/m² aufgetragen sind, kommen durch eine Drittelung der Pressung zustande. Und die Werte, die im Bereich der Wärmestromdichte von circa 1300W/m² zu sehen sind, stammen aus einer Halbierung der Hubhöhe beziehungsweise der Konvektionsfläche. Die Änderung der Hubhöhe entspricht dabei einer proportionalen Änderung des Eingriffsverhältnisses. Insgesamt stimmt die Simulation mit den Messwerten überein. Daraus lässt sich ein dominanter Einfluss der Pressung, der Gleitgeschwindigkeit und der Hubhöhe beziehungsweise der Konvektionsfläche ableiten.

Mit einem steigenden Gewindendurchmesser, bei konstanter Pressung \(p=1,96N/mm² \) und Gleitgeschwindigkeit \(v=22,6m/min \), ist in der Abbildung (Abb. 4.2.) eine Steigerung des Wärmewiderstandes zu beobachten. Offensichtlich wirkt der Gewindendurchmesser dominant auf die Wärmecharakteristik der Spindel ein, weil jede Gewindespindel ihre eigene spezifische Konvektionsfläche hat, die in die Berechnung der Wärmestromdichte miteinfließt.

Bei der Trapezgewindespindel Tr14x3 ist die größte Abweichung mit einem relativ breiten Streubereich zu beobachten. Hier sind auch Ausreißer zu sehen. Der größte Ausreißer stammt aus einem Versuch, bei dem der Stick-Slip-Effekt besonders intensiv wahrnehmbar wurde.
An dem Referenzversuch mit der Trapezgewindespindel Tr20x4 bei größerer Variationsbreite der Wärmestromdichte, ist eine deutlichere Übereinstimmung der Ergebnisse feststellbar. Das ist ein Indiz dafür, dass das im Kapitel 2.2 mit den Formeln 2.20 bis 2.28 beschriebene Modell zur analytischen Berechnung des Wärmeverhaltens eines Profilzylinders auf Trapezgewindetriebe übertragbar ist.
Die Anwendbarkeit ist nicht nur bei Reibpaarungen mit polymerbasierten Muttern auf Stahlspindeln offensichtlich, sondern auch bei Reibpaarungen mit metallischen Bronze-Muttern (Abb. 4.3.). Obwohl eine metallische Mutter Tr20x4 mit der hohen Wärmeleitfähigkeit einer Bronze bei einer Gleitgeschwindigkeit 22,6m/min eingesetzt wurde, stimmt die Simulation mit den Messwerten näherungsweise überein. Bei dieser Reibpaarung würde man eine höhere Wärmeableitung über die gut wärmeleitende Bronze-Mutter erwarten. Der Wärmewiderstand für die Stahlspeidel mit einer Bronze-Mutter beträgt $R_w=0,042 \pm 0,005$[m²·K/W] und für die Stahlspeidel mit einer Polymer-Mutter $R_w=0,050 \pm 0,005$[m²·K/W] bei einem Grade des Vertrauens von 95%.

Abb. 4.2.: Empfindlichkeit des Wärmewiderstandes auf den Gewindenendurchmesser
4.5. Vergleich der simulierten Spindeltemperatur mit den Versuchsergebnissen

Abb. 4.3.: Empfindlichkeit des Wärmewiderstandes auf metallische Bronze-Mutter

Die Muttern können in einem Schlitten eingebaut werden, der einen gewichtigen Wärmewiderstand zur Umgebung darstellt. Weil die Muttern unterschiedlich gelagert werden können, zum Beispiel in einem Schlitten, als ein Maschinenverbund oder offen mit einem Flansch, wird in dieser Arbeit kein allgemeingültiger Berechnungsansatz zu dieser Problematik vorgeschlagen.

4. Temperaturverhalten von Trapezgewindetrieben

4.6. Fehlerquellenanalyse

Schmierfett kann die hubbezogene Konvektionsfläche der Trapezgewindespindel verändern. Eine 0,2mm dicke Fettschicht im Gewindegrund verkleinert die hubbezogene Konvektionsfläche der Trapezgewindespindel bei einer Umdrehungsfrequenz zum Beispiel von 580/min um circa 0,0035 m²/m und bewirkt eine rechnerische Temperaturerhöhung von circa 1°C.

Die Reibung kann sich während des Betriebs ändern. Eine Änderung des Reibungskoeffizienten um 0,01 und folglich des Antriebsmoments um 0,1Nm führt rechnerisch zu einer Änderung der Spindeltemperatur um circa 3°C.

Gelegentlich können Stick-Slip-Effekte auftreten. Dabei entstehen im Drehmomentverlauf impulsartige Ausschläge, die während der Messung herausgefiltert wurden. Ein realistisch angenommener impulsartiger Ausschlag im Drehmomentverlauf von 1 Nm bewirkt rechnerisch eine Temperaturerhöhung um circa 30°C.

Vor der Inbetriebnahme werden die Spindeln gerichtet, um die Unwucht zu beseitigen. Es können während des Betriebs dennoch selbsterregte Vibrationen und Schwingungen auftreten, die sogar an den Umkehrpunkten bei Stillstand nachschwingen. Durch die Vibrationen entsteht an einer dünnen Trapezgewindespindel eine vibrationsbedingte Auslenkung und somit eine zusätzliche Geschwindigkeitskomponente, die zu einer Abkühlung der Spindel beiträgt. Eine Auslenkung beispielsweise von 1mm kühlt die Spindel rechnerisch um circa 1°C ab.
4.7. Zusammenfassung

Über die analytische Ermittlung der Wärmestromdichte und des Wärmewiderstandes wurde eine Möglichkeit zur Berechnung der Gleitflächentemperatur an der Spindel aufgezeigt, die folglich mit der zulässigen Betriebstemperatur der Leitmutter beziehungsweise des Schmierstoffes verglichen werden kann, um anschließend die thermische Leistungsfähigkeitsgrenze eines Trapezgewindetriebes zu bestimmen. Diese Methode gilt für Trapezgewindetriebe mit umgebungsoffener Ausführung und ist für Stahlspindeln mit polymerbasierten wärmeisolierenden Muttern gut anwendbar. Falls eine gut wärmeleitende metallische Mutter verwendet wird, sollte der Wärmeenergiestrom über die Mutter und über deren Lagerung berücksichtigt werden, weil die analytische Berechnung der Spindeltemperatur tendenziell zu einem etwas höheren Ergebnis führt. Aufgrund von beliebig möglichen Konstruktionskonzepten für Muttern und deren Lagerungen kann eine Abschätzung dieser Ergebnisabweichung nicht allgemein gelten. Da die tatsächliche Spindeltemperatur tendenziell etwas kleiner als die berechnete ist, kann die genannte Methode aufgrund höherer rechnerischer Sicherheit auch bei metallischen Muttern angewendet werden.
5. Verschleißverhalten von Trapezgewindetrieben

In diesem Kapitel wird analysiert, wie empfindlich das Verschleißverhalten auf systematische Variation von ausgewählten Einflussgrößen reagiert. Bei der Empfindlichkeitsanalyse wird eine möglichst vollständige Isolierung einzelner Verschleißseinflussgrößen angestrebt, um deren Wirkung auf das Verschleißverhalten der Trapezgewindetriebe hervorzuheben.

5.1. Pressung

5.1.1. Problembeschreibung

Im Verschleißverlauf können unterschiedliche Verschleißintensitäten bei unterschiedlichen Pressungen auftreten. Nach dem empirischen Verschleißgesetz von Archard ist die Verschleißintensität zur Pressung proportional. Wenn der Proportionalitätsfaktor bekannt ist, dann lässt sich die Verschleißintensität für eine beliebige Pressung bestimmen. Diese Erkenntnis kann für die Berechnung der Nutzungsdauer von Trapezgewindetrieben und für die Versuchsoptimierung nützlich sein.

5.1.2. Ziel

5.1.3. Methode

5.1.4. Versuchsbeschreibung

Die Verschleißhöhe wird durch das Anfahren der Mutter auf den Maschinennullpunkt als axiale Wegdifferenz zum Neuzustand erfasst. Über die Betriebsdauer bildet sich eine Verschleißkennlinie mit beginnender Verschleißeinlaufphase und nachfolgender Stationärphase (Abb. 5.1.).

![Typische Verschleißkennlinie](image)

Abb. 5.1.: Typische Verschleißkennlinie

Die Messung der Verschleißhöhe erfolgt mit dem induktiven Wegaufnehmer „WA 10“ des Herstellers „Hottinger Baldwin Messtechnik GmbH“ mit einer Linearitätsabweichung ±0,1%.

Die Versuche erfolgen bei drei verschiedenen Pressungen $p = 0,6\,\text{N/mm}^2$, $p = 1,3\,\text{N/mm}^2$, $p = 2,0\,\text{N/mm}^2$, wobei die letzte die maximal zulässige ist.
5. Verschleißverhalten von Trapezgewindetrieben

5.1.5. Auswertung

Die spezifische lineare Verschleißintensität „I_h“ stellt sich in der stationären Phase ein. Zur Ermittlung der Verschleißintensität wird eine Regressionsgerade aus dem linearen Bereich der Verschleißkennlinie gebildet (Abb. 5.1.).

Die Steigung der Regressionsgeraden entspricht der Verschleißintensität. Die Verschleißintensitäten jedes einzelnen Versuchs werden im Diagramm (Abb. 5.2.) über die zugehörigen Pressungen aufgetragen.

Durch die Normierung der Verschleißintensität „I_h“ für die Pressung „p“ bildet sich eine Regressionsgerade, die den spezifischen volumetrischen Verschleißkoeffizient „k_V“ darstellt.

Die relativ kurzandauernde Verschleißeinlaufphase wird nicht ausgewertet, weil der Verschleißprozess nicht stabil und deren Eignung für die Verschleißprognose nicht erkennbar ist.

Abb. 5.2.: Normierung der Verschleißintensität für die Pressung

Für Trapezgewinde Tr20x4 mit der Reibpaarung ZX530/E295+C gilt der empirisch ermittelte Verschleißkoeffizient $k_V = (2.9 \pm 0.9) \cdot 10^{-8}$ [mm3/Nm] bei einem Grad des Vertrauens von 95%. Dem Verschleißkoeffizient liegen achtundzwanzig Versuche zu Grunde.

Die Messwerte weisen eine Streuung auf, die für den stochastischen Charakter des Verschleißes typisch ist.
Die Regressionsgerade beginnt annähernd im Punkt $[0;0]$. Das Bestimmtheitsmaß $R^2 = 0,12$ beschreibt die Wahrscheinlichkeit des linearen Zusammenhangs zwischen der Verschleißintensität und der Pressung.

Diese Darstellung führt zur Erkenntnis, dass die Versuchsplanung optimiert werden kann. Es würde ausreichen, die Versuche bei maximaler Gleitgeschwindigkeit und bei maximaler Pressung durchzuführen. Aus diesen wenigen Versuchen kann die Steigung der Regressionsgeraden und somit der Verschleißkoeffizient „k_V“ ermittelt werden. Eine Variation der Pressung ist nicht mehr erforderlich, da die Kennwerte für die Verschleißintensität bei kleineren Pressungen auch durch eine Interpolation näherungsweise bestimmbar sind.

5.1.6. Fehlerquellenanalyse

Bei höheren Pressungen werden gelegentlich ungewöhnlich hohe Verschleißintensitäten, oft kurz nach der Einlaufphase, beobachtet. Bei näherer Betrachtung der Gleitflächen der Spindel werden tiefe Kratzer entlang des ganzen Gleitweges entdeckt (Abb. 5.3.).

![Abb. 5.3.: Kratzer auf der Gewindeflanke einer Stahl-Spindel](image)

Da die Spindeln vor erstmaliger Inbetriebnahme gründlich gereinigt werden, ist die Annahme von versehentlich zugefügten Fremdpartikeln unbegründet. Logischer erscheint die Annahme, dass die Spindeln herstellungsbedingte sichtbare Oberflächenfehler und unsichtbare Fehler unter der Oberfläche aufweisen können. Die unsichtbaren Oberflächenfehler können durch wiederholende Übergleitungen und
5. Verschleißverhalten von Trapezgewindetrieben

Wärmeimpulse wachsen und ermüdungsbedingte Körner bilden, die sich aus der Gleitfläche herauslösen können.

Bei näherer Betrachtung von neuen unbenutzten Spindeln konnten die sichtbaren Oberflächenfehler an den Flanken nachgewiesen werden (Abb. 5.4.), daher können unsichtbare oberflächennahen Fehler auch nicht ausgeschlossen werden.

Abb. 5.4.: Sichtbarer zufälliger Oberflächenfehler auf einer Gewindeflanke

Die Oberflächenfehler können abrasiv wirken und die Verschleißintensität der Mutter deutlich erhöhen. Die herausgebrochenen Stahl-Körner können in der Polymer-Mutter eingebettet und über den gesamten Gleitweg mitgezogen werden, was eine Oberflächentransformation an der Stahl-Spindel und die Entstehung einer neuen Einlaufphase begünstigt.

5.1.7. Zusammenfassung

Der Proportionalitätsfaktor beziehungsweise der Verschleißkoeffizient kann somit in die Verschleißberechnung mit einfließen.

Die Oberflächenfehler dürfen nicht außer Acht gelassen werden, weil sie im Verschleißverlauf eine plötzlich aufkommende Instabilität auslösen können.
5.2. Gleitgeschwindigkeit

5.2.1. Problembeschreibung

5.2.2. Ziel

5.2.3. Methode

5. Verschleißverhalten von Trapezgewindetrieben

5.2.4. Versuchsbeschreibung

Die Versuche werden am Trapezgewinde Tr20x4 mit der Polymer-Mutter aus ZX530 und Stahl-Spindel aus E295+C mit einmaliger Montageschmierung bei konstanter Pressung \(p = 2 \, \text{N/mm}^2 \) und Hubhöhe \(H = 1500 \, \text{mm} \) durchgeführt. Zu Beginn des Versuchs wird eine Spindeldrehzahl von 150/min eingestellt. Nach einem zurückgelegten spindelbezogenen Weg von 47km wird eine dreifache Spindeldrehzahl von 450/min einprogrammiert. Nach einem Spindelweg von 93km wird die Spindelfrequenz auf den ursprünglichen Wert von 150/min zurückgestellt. Weitere Einflussgrößen werden nach jeder Drehzahländerung nicht verändert.

5.2.5. Auswertung

In der Übersicht (Abb. 5.5.) ist die Verschleißhöhe über den zurückgelegten Spindelweg aufgetragen. Die Betriebsdauer ist in drei Gleitgeschwindigkeitsbereiche unterteilt. Exemplarisch werden aus zwei Versuchen zwei typische Verschleißkennlinien bei variabler Gleitgeschwindigkeit dargestellt.

Abb. 5.5.: Typische Verschleißkennlinien bei verschiedenen Gleitgeschwindigkeiten

5.2.6. Fehlerquellenanalyse

Bei geschmierten Reibpaarungen kann sich bei sehr langsamen Gleitgeschwindigkeiten die Schmierwirkung verschlechtern. Das Schmierfett hat genügend Zeit, um pressungsbedingt aus dem Reibkontakt wegzuschießen, was zu einem Festkörperkontakt führen kann. Bei zu hohen Gleitgeschwindigkeiten kann der Schmierfilm aufgrund eigener Zähigkeit abreifen.

Zum Umprogrammieren der Spindeldrehfrequenzen müssen die Gewindetriebe angehalten werden. Dabei können sich die Spindel, die Mutter und die anderen Komponenten abkühlen. Beim Wiedereinschalten können Messfehler als kleine wärmeausdehnungsbedingte Sprünge in der Verschleißkennlinie mitgemessen werden.

5.2.7. Zusammenfassung

Aus der Untersuchung geht hervor, dass die Gleitgeschwindigkeit auf die Verschleißintensität einen rezessiven Einfluss hat. Weil die Gleitgeschwindigkeit keinen nennenswerten Effekt in der Verschleißtendenz verursacht, wird sie in der Verschleißberechnung nicht berücksichtigt. Die vernachlässigbar geringen Effekte sind möglicherweise auf den stochastischen Charakter des Verschleißes zurückzuführen. Die Gleitgeschwindigkeit beziehungsweise die Spindeldrehfrequenz ist aber für die Berechnung der thermischen Leistungsfähigkeit von Trapezgewindetrieben bedeutend, weil sie die Relativgeschwindigkeit zwischen der Spindel und dem Umgebungsmedium definiert.

5.3. Gewindenenndurchmesser

5.3.1. Problembeschreibung

Rühle/Winkelmann [Rüh06] vergleichen das Trapezgewinde nach DIN103 Tr40x7 mit dem abgewandelten nicht normgerechten Tr38x7 und legen eine energetische Berechnung für die Reibungszahl dar. Aus der Energiebilanz setzt sich die zu ermittelnde Reibungszahl aus einem adhäsiven und deformativen Anteil zusammen. Sie stellen fest, dass die Veränderung des Durchmessers zu einer Erhöhung der Reibungszahl führt und weisen auf die mögliche Verschleißerhöhung des schwächeren Reibpartners hin. Ihre Erkenntnis ist allerdings nur eine theoretische Überlegung und muss noch experimentell überprüft werden. Das ist aber ein Anlass zu hinterfragen, ob der Gewindenenndurchmesser bei realen identischen Betriebsbedingungen einen Einfluss auf die Verschleißintensität hat.
5. Verschleißverhalten von Trapezgewindetrieben

5.3.2. Ziel

Es wird angenommen, dass für ein mikroskopisch kleines Verschleißteilchen eher die mikroskopische Beschaffenheit der Gleitflächen relevant ist und nicht die makroskopische Geometrie der Gleitkörper. Aufgrund dieser Annahme soll analysiert werden, wie empfindlich die Verschleißintensität auf die Variation der Gewindegeometrie reagiert. Unter der Annahme geometrischer Ähnlichkeit, soll die Übertragbarkeit von Verschleißeigenschaften auf verschiedene Gewindenenndurchmesser bestätigt werden. Die Erkenntnisse sind für die Berücksichtigung in den Verschleißberechnungen vorgesehen.

5.3.3. Methode

In der Empfindlichkeitsanalyse müssen die Einflüsse der Werkstoffreibpaarung und der Gleitflächencharakteristik isoliert werden. Es ist anzumerken, dass die Gleitflächencharakteristik von Trapezgewindespindeln produktionsbedingt nicht immer gleich sondern nur identisch hergestellt werden kann. Folglich werden die Versuche mit gleichen Werkstoffen und identischen Oberflächenqualitäten durchgeführt. Dabei sollen ausschließlich nur die Gewindenenndurchmesser nach dem Versuchsplan (Abb. 3.3.) variert werden. Die Messergebnisse von Verschleißintensitäten werden in einem Diagramm gegenübergestellt und miteinander verglichen.

5.3.4. Versuchsbeschreibung

Die Variation der Nenndurchmesser erfolgt mit den Gewinden Tr24x5, Tr20x4, Tr14x3 mit der Polymer-Mutter aus ZX530 und Stahl-Spindel aus E295+SH mit einmaliger Montageschmierung bei konstanter Pressung. Aufgrund von unterschiedlichen Gewindesteigungen der einzelnen Gewindendenndurchmesser können die Versuche nicht mit der gleichen Hubhöhe gefahren werden. Stattdessen werden die identischen windungsbezogenen Gleitwege eingestellt, die sehr gut miteinander vergleichbar sind.

5.3.5. Auswertung

In der Übersicht (Abb. 5.6.) sind die Streubereiche für die Verschleißintensitäten bei verschiedenen Gewindenenndurchmessern, mit jeweils sieben Versuchen für Tr24x5 und Tr14x3 sowie vier Versuche für Tr20x4, dargestellt.
5.3. Gewindendenndurchmesser

Beim Gewindendenndurchmesser Tr14x3 ragen einige Messwerte in den Bereich der milden Verschleißintensität hinein. Bei näherer Betrachtung der Flankenoberflächen weisen einige Spindeln subjektiv glattere Oberflächen auf.

5.3.6. Fehlerquellenanalyse

Für die Vergleichbarkeit von Verschleißintensitäten bei verschiedenen Gewindendenndurchmessern müssen insbesondere die Pressung und der Gleitweg vergleichbar sein.

5. Verschleißverhalten von Trapezgewindetrieben

5.3.7. Zusammenfassung

5.4. Eingriffsverhältnis

5.4.1. Problembeschreibung

Das Eingriffsverhältnis definiert sich über das Verhältnis von Reibkontaktfläche zu Gesamtgleitfläche. Bei Trapezgewindetrieben lässt sich das Eingriffsverhältnis entweder über die Hubhöhe während des Betriebs oder konstruktiv über die tragende Länge der Leitmutter variieren. Man kann sich vorstellen, dass bei einem großen Eingriffsverhältnis die Spindel ihre Wärme tendenziell schlechter an die Umgebungsluft abgeben kann, weil die Konvektionsfläche mehr von der Leitmutter verdeckt wird. In Bezug auf den Verschleiß, ändert sich automatisch die Anzahl an Richtungsumkehrvorgängen im Hubbereich der Spindel. Es ist daher denkbar, dass diese Effekte bei der Übertragbarkeit vor allem im Wärmeabgabeverhalten signifikant sind. Laut Müller [Mü104] muss bei der Übertragbarkeit der Verschleißcharakteristik vom Modell auf das Realsystem insbesondere das Eingriffsverhältnis berücksichtigt werden. Dabei kommt die Fragestellung auf, ob zwei identische Trapezgewindetriebe, die bei identischen Betriebsbedingungen aber mit unterschiedlichen Hubhöhen betrieben werden, identisch verschleißen?

5.4.2. Ziel

Es ist zu analysieren was eine Variation des Eingriffsverhältnisses im Verschleiß von Trapezgewindetrieben bewirkt. Die Untersuchung soll die Antwort auf die Frage liefern, ob eine höhere Anzahl an Richtungsumkehrvorgängen bei unverändertem Gleitweg einen signifikanten Effekt verursacht. Die Erkenntnisse sind in der Verschleißberechnung zu berücksichtigen.
5.4. Eingriffsverhältnis

5.4.3. Methode

Die Versuche sind nach dem Versuchsplan (Abb. 3.4.) bei verschiedenen Gewindendurchmessern zu fahren.

5.4.4. Versuchsbeschreibung

Um den Eingriffsverhältnis zu variieren wurde die Hubhöhe beziehungsweise die Mutterlänge bei gleichbleibender Pressung wie folgt verändert:

Referenzversuche beim Eingriffsverhältnis von 0,0373

<table>
<thead>
<tr>
<th>Gewinde</th>
<th>Mutter</th>
<th>Spindel</th>
<th>Mutterlänge</th>
<th>Hublänge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Versuchspaar 1; 2: Tr20x4</td>
<td>ZX530</td>
<td>C15+C</td>
<td>56mm</td>
<td>1500mm</td>
</tr>
<tr>
<td>Versuchspaar 3</td>
<td>Tr14x3</td>
<td>ZX530</td>
<td>E295+SH</td>
<td>38mm</td>
</tr>
<tr>
<td>Versuchspaar 4</td>
<td>Tr24x5</td>
<td>ZX530</td>
<td>E295+SH</td>
<td>37mm</td>
</tr>
</tbody>
</table>

Versuche beim Eingriffsverhältnis von 0,0093

<table>
<thead>
<tr>
<th>Gewinde</th>
<th>Mutter</th>
<th>Spindel</th>
<th>Mutterlänge</th>
<th>Hublänge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Versuchspaar 1; 2: Tr20x4</td>
<td>ZX530</td>
<td>C15+C</td>
<td>7mm</td>
<td>750mm</td>
</tr>
</tbody>
</table>

Versuche beim Eingriffsverhältnis von 0,0746

<table>
<thead>
<tr>
<th>Gewinde</th>
<th>Mutter</th>
<th>Spindel</th>
<th>Mutterlänge</th>
<th>Hublänge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Versuchspaar 3</td>
<td>Tr14x3</td>
<td>ZX530</td>
<td>E295+SH</td>
<td>38mm</td>
</tr>
<tr>
<td>Versuchspaar 4</td>
<td>Tr24x5</td>
<td>ZX530</td>
<td>E295+SH</td>
<td>37mm</td>
</tr>
</tbody>
</table>

Die Last wird entsprechend angepasst, damit die Pressung auf den Gewindegängen unverändert bleibt.

Alle Versuche werden bei identischer Pressung mit einmaliger Montageschmierung durchgeführt.
5. Verschleißverhalten von Trapezgewindetrieben

5.4.5. Auswertung

In der Abbildung (Abb. 5.7.) ist die Verschleißintensität über den Eingriffsverhältnis aufgetragen. Die Referenzversuche beziehen sich auf das Eingriffsverhältnis von 0,0373. Die Vergleichsversuche sind zu den Eingriffsverhältnissen 0,0093 und 0,0746 zugeordnet.

![Verschleißintensität in Abhängigkeit vom Eingriffsverhältnis](image)

An den Versuchspaaren 1, 2 und 3 sind die Verschleißintensitäten bei deutlich veränderten Eingriffsverhältnissen nahezu identisch. Beim Versuchspaar 4 ist eine Abweichung zu sehen. Vermutlich ist diese Abweichung entweder auf den stochastischen Charakter des Verschleißes zurückzuführen oder auf einen zufälligen Oberflächenfehler, der nach der Halbierung der Hubhöhe nicht mehr angefahren wurde. Man sollte auch bedenken, dass der Differenzwert „1x10^-8-mm/m“ sehr klein ist.

Im Vergleich zu den Referenzversuchen beim Eingriffsverhältnis von 0,0373 weisen die nachfolgend modifizierten Vergleichsversuche eine Tendenz zur milderer Verschleißintensität auf. Weil die modifizierten Vergleichsversuche auf derselben Oberfläche gleiten, absolviert die Gleitfläche der Spindel bei den nachfolgenden Versuchen eine höhere Anzahl an Übergleitungen. Das bedeutet, dass mit jeder Übergleitung die Gleitflächen sogar noch in der stationären Verschleißphase weiter einlaufen können.

Das Eingriffsverhältnis wirkt offensichtlich rezessiv auf die Verschleißintensität ein. Eine größere Wirkung erzielt das Eingriffsverhältnis bei der Berechnung der thermischen Leistungsfähigkeit von Trapezgewindetrieben. Mit der Änderung der Hubhöhe ändert sich auch die Konvektionsfläche, die das Wärmeverhalten der Spindel verändert.
5.4.6. Fehlerquellenanalyse

Bei einer Verkürzung der Hubhöhe reduziert sich die Anzahl an zufälligen Oberflächenfehlern auf die Anzahl, die sich im verkürzten Hubbereich befindet. Das liegt an der Tatsache, dass einige zufällige Oberflächenfehler durch die Verkürzung der Hubhöhe nicht mehr angefahren werden. Die eingelaufenen Flächen mit weiterer Einlaufftendenz können zu einem milderen Verschleiß führen. Grund dafür können tribochemische Reaktionsschichten sein, die sich auf metallischen Gleitflächen bilden und verschleißmildernd wirken. Bei einer Erhöhung der Hubhöhe kann das Gegenteil eintreten und möglicherweise sogar eine neue nichtlineare Verschleißeinlaufphase beginnen.

5.4.7. Zusammenfassung

Die Untersuchung führt zur Erkenntnis, dass die Verschleißintensität rezessiv auf eine Änderung des Eingriffsverhältnisses reagiert. Eine weitere Erkenntnis zeigt, dass mit steigender Anzahl an Übergleitungen auf den eingelaufenen Gleitflächen eine weitere Abmilderung der Verschleißintensität begünstigt werden kann. Diese Abmilderung kann sogar in der stationären Verschleißphase fortlaufen, so dass der Verschleiß kaum messbar wird.

5.5. Werkstoffpaarung

5.5.1. Problembeschreibung

5. Verschleißverhalten von Trapezgewindetrieben

5.5.2. Ziel

Die Annahme, dass identische Werkstoffe mit identischen technischen Eigenschaften auch identisches Verschleißverhalten aufweisen, soll bestätigt werden. Diese Erkenntnis soll zur Findung einer optimalen Reibpaarung beitragen, um die konventionellen schadstoffhaltigen Reibpaarungen im Trapezgewindetrieb durch die schadstofffreien und technisch sowie preislich identischen Reibpaarungen abzulösen.

5.5.3. Methode

Für die Untersuchung werden zwei technisch ähnliche Reibpaarungen gewählt, die jeweils aus zwei verschiedenen Polymer- und Stahlsorten bestehen. Bei der Untersuchung unter identischen Betriebsbedingungen soll die Verschleißintensität von varierten Reibpaarungen gemessen und miteinander verglichen werden. Um den Einfluss von weiteren Einflussgrößen auszuschließen und die Vergleichbarkeit zu gewährleisten, sollen ausschließlich nur die Werkstoffe der Mutter und der Spindel bei identischen Betriebsbedingungen variiert werden. Die Versuche sollen an einem Referenzgewinde bei gleichbleibender Pressung und Gleitgeschwindigkeit gefahren werden.

Die Werkstoffe der Spindeln sollen variiert werden. Die Spindeln sollen jedoch nach dem gleichen Verfahren gefertigt werden und die gleiche Zustandsbezeichnung tragen, um auch die Vergleichbarkeit von identischen Gleitflächen zu ermöglichen.

5.5.4. Versuchsbeschreibung

Um den Einfluss der Werkstoffpaarung zu untersuchen, werden die Referenzversuche mit dem Trapezgewinde Tr20x4 systematisch mit Werkstoffpaarungen bei einmaliger Montageschmierung nach dem Versuchsplan (Abb. 3.5.) kombiniert. Die Polymere ZX530 und Murythal-C sowie Stähle E295+C und C15+C mit identischer Gleitflächencharakteristik des Zustands „+C“ haben annähernd vergleichbare technische Werkstoffeigenschaften. Die wichtigsten Kriterien für den Vergleich der Werkstoffe sind die Dauerbetriebstemperatur, die Dichte und die Härte.

ZX530: Dauerbetriebstemperatur 90°C; Dichte 1,51kg/dm³; Härte HB 134 N/mm²

Murythal: Dauerbetriebstemperatur 100°C; Dichte 1,41kg/dm³; Härte HB 145 N/mm²

5.5. Werkstoffpaarung

5.5.5. Auswertung

In der Übersicht (Abb. 5.8.) sind die Verschleißintensitäten mit den Streubereichen für verschiedene Reibpaarungen dargestellt.

![Verschleißintensität bei variablen Reibpaarungen](image)

Abb. 5.8.: Verschleißintensität bei variablen Reibpaarungen

5. Verschleißverhalten von Trapezgewindetrieben

5.5.6. Fehlerquellenanalyse

Bei den Spindeln aus unterschiedlichen Chargen können die Gleitflächen eine unterschiedliche Charakteristik aufweisen, die den Messwert der Verschleißintensität beeinflusst. Um die Vergleichbarkeit der Messwerte zu gewährleisten, müssen die Prüflinge aus der gleichen Charge kommen. Bei der Spindelherstellung entsteht die Flankenoberfläche in den meisten Fällen eher zufällig, weil der Fertigungsprozess des Gewinderollens in Bezug auf Oberflächenfehler und Überrollungen noch nicht vollständig beherrscht ist.

5.5.7. Zusammenfassung

Aus der Untersuchung geht hervor, dass die Werkstoffe mit identischen technischen Eigenschaften auch identisches Verschleißverhalten aufweisen können. Der Einfluss der Zusammensetzung der Werkstoffe ist eher nicht auffällig, obwohl die untersuchten Polymere und Stähle von unterschiedlichen Sorten sind.

Die Voraussetzung für die Vergleichbarkeit der Verschleißintensitäten ist vor allem die identische Gleitflächencharakteristik der Spindeln. Eine genauere Analyse erfordert wesentlich mehr unterschiedliche Materialien.

5.6. Gleitflächencharakteristik

5.6.1. Problembeschreibung

Bei genauer Betrachtung von Trapezgewindespindeln weisen die Gewindeflanken stellenweise schuppenförmige Ausbrüche, unregelmäßige Druckstellen oder sichelförmige Strukturen im Gleitflächenbereich auf. Die Oberflächenfehler sind unter dem Mikroskop nachweisbar.

Der Passungsdurchmesser der Spindelrohlinge variiert je nach dem, ob die Rohlinge bei der Herstellung nur kaltgezogen (C-Zustand) oder zusätzlich noch geschält wurden (SH-Zustand). Nach dem Gewinderollen wird die Gewindestirn im SH-Zustand besser angerollt als im C-Zustand. Aus diesem Zusammenhang entsteht die Fragestellung, ob die Spindeln aus geschältem Vormaterial mit vollständig angeroller Gewindestirn optisch zwar besser als die aus gezogenem Vormaterial aussehen, aber gleichzeitig...
5.6. Gleitflächencharakteristik

die sichelförmige Überwalzungen mit Abplatzungen auf der Flankenoberfläche aufweisen.

5.6.2. Ziel

Durch Versuche soll der Einfluss der Gleitflächencharakteristik auf das Verschleißverhalten als dominant bestätigt werden.
Für die Oberflächencharakterisierung ist eine geeignete Methode aufzuzeigen, um die Vergleichbarkeit der Gewindeflankenoberflächen reproduzierbar für eine wissenschaftliche Auswertung zu gewährleisten.

5.6.3. Methode

Die Versuche sollen mit einer Reibpaarung aus Polymer auf Stahl durchgeführt werden. Diese Konstellation ist für die Untersuchung besonders gut geeignet, weil die Test-Polymere nicht adhäsiv sind und die Stahlflächen vernachlässigbar gering auf Verschleiß beansprucht werden. So können die nahezu unverschlissenen Gleitflächen der Spindel auch nach dem Versuch begutachtet werden.
Die Versuche sind mit den Spindeln durchzuführen, die unterschiedliche Gleitflächencharakteristika aufweisen.
Da definierte Oberflächenqualitäten aus fertigungstechnischen Gründen nicht auf Bestellung zu bekommen sind, sollen die Spindeln mit dem Zustand „+C“ und „+SH“ mit zufällig produzierter Gleitflächenqualität getestet werden.

5.6.4. Versuchsbeschreibung

Die Versuche erfolgen mit der Werkstoffpaarung Murythal-C und C15+C auf der Trapezgewindespindel Tr20x4.
Bei zwei von vier Versuchen weisen die Spindeln eine sichelförmige Struktur an den Gleitflächen auf und tragen eine Zusatzbezeichnung „+C+Gleitfläche mit Sichelform“.

Die Versuche werden bei identischen Pressungen, Gleitgeschwindigkeiten und Eingriffsverhältnissen durchgeführt.
5. Verschleißverhalten von Trapezgewindetrieben

Es werden zusätzlich die bereits ausgewerteten Versuche aus den bisherigen Untersuchungen wiederverwendet. Für diese Versuche gelten ebenfalls identische Pressungen, Gleitsgeschwindigkeiten, Eingriffsverhältnisse und Betriebsbedingungen.

5.6.5. Auswertung

Zu einer wichtigen Erkenntnis werden zusätzlich die Versuche nach den Versuchsplänen (Abb. 3.3.) und (Abb. 3.5.) herangezogen und in einer gemeinsamen Übersicht (Abb. 5.9.) zusammengefasst. In der Übersicht sind die Verschleißintensitäten aus den bereits erfolgten Untersuchungen dargestellt. Die Versuche sind an Zusatzbezeichnungen zu unterscheiden.

![Diagramm](image)

Abb. 5.9.: Verschleißintensität bei unterschiedlicher Gleitflächencharakteristik

In den ersten drei Spalten von links nach rechts sind die Versuche mit der Zustandsbezeichnungen „+SH“ gekennzeichnet und entsprechen der Gleitflächencharakteristik der Spindel in der Darstellung (Abb. 5.10.).

Rechts in der letzten Spalte sind die Ergebnisse mit „+C+Gleitfläche mit Sichelform“ gekennzeichnet. Sie stammen aus den Versuchen, die sichelförmige Fehler auf der Gewindeflanke der Spindel aufweisen und sind der Darstellung (Abb. 5.12.) zugeordnet.
In den übrigen vier Spalten sind die Versuche mit der Zustandsbezeichnungen „+C“ gekennzeichnet und gehören zur Gleitflächencharakteristik der Spindel in der Darstellung (Abb. 5.11.).

Aus dem Diagramm ist zu erkennen, dass die Versuchsmesswerte mit den Spindeln des Zustands „+C“ im Bereich der Verschleißintensität zwischen 10^{-8} und 10^{-7} [mm/m] liegen.

Die Messwerte mit den Spindeln des Zustands „+SH“ sowie mit den sichelförmigen Oberflächenfehlern liegen zwischen den Verschleißintensitäten von 10^{-7} und 10^{-6} [mm/m].

Die Gleitflächen einiger Trapezgewindespindel Tr14x3+SH weisen eine bessere Charakteristik auf. Diese Oberflächen ähneln eher der Abbildung (Abb. 5.11).

Bei der in Abbildung (Abb. 5.9.) gegenübergestellten Oberflächenbeschaffenheit mit entsprechender Verschleißintensität wird deren Zusammenhang deutlich. Dies ist ein Indiz für den dominanten Einfluss der Gleitflächencharakteristik auf das Verschleißverhalten.

5.6.6. Gleitflächenartencharakterisierung

Im Wesentlichen lassen sich drei Arten von Gleitflächen feststellen. Die Gleitfläche in der Abbildung (Abb. 5.10.) ist für die Spindeln mit der Zustandsbezeichnung „+SH“ charakteristisch. Die Gleitflächen weisen stellenweise Oberflächenfehler auf, die wie Ausbrüche und Abplatzungen aussehen.

Abb. 5.10.: Gleitfläche der Trapezgewindespindel des Zustands „+SH“
5. Verschleißverhalten von Trapezgewindetrieben

Die Abbildung (Abb. 5.11.) zeigt eine Gleitfläche der Trapezgewindespindel mit der Zustandsbezeichnung „+C“. Hier ist die Oberfläche überwiegend glatt und eben mit homogener Rauheit im gesamten Bereich.

In der Abbildung (Abb. 5.12.) ist auch eine Gleitfläche der Trapezgewindespindel mit der Zustandsbezeichnung „+C“ abgebildet. Diese Gleitflächen weisen Oberflächenfehler mit sichelförmiger Struktur auf. Die hellen riss- und ausbruchartigen Bereiche haben eine körnige Struktur. Unter dem Mikroskop sehen die rissartigen Bereiche nicht wie Risse sondern wie Überwalzungen aus, die auch an der angerollten Gewindestirn nachweisbar sind.

Abb. 5.11.: Gleitfläche der Trapezgewindespindel des Zustands „+C“

Abb. 5.12.: Gleitfläche der Trapezgewindespindel des Zustands „+C“ mit Sichelform
5.6. Gleitflächencharakteristik

Haptisch fühlen sich die Spindeln des Zustands „+C“ mit den sichelförmigen Oberflächenfehlern wesentlich rauer als die beiden anderen Oberflächenarten an.

5.6.7. Fehlerquellenanalyse

Die Abbildungen (Abb. 5.10.), (Abb. 5.11.), (Abb. 5.12.) repräsentieren nur grob die drei getesteten Gleitoberflächenarten. Sie zeigen nur einen sehr kleinen Gleitflächenabschnitt, der weitere mögliche Anomalien nicht darstellt.

Neben den sichtbaren Oberflächenfehlern können auch verborgene oberflächennahe Materialfehler vorkommen, die sich nach einer bestimmten Betriebsdauer bemerkbar machen.

Um eine Gleitflächencharakteristik mit dem Verschleißverhalten genauer vergleichen zu können ist eine genauere Methode zur Gleitflächencharakterisierung erforderlich.

5. Verschleißverhalten von Trapezgewindetrieben

5.6.8. Zusammenfassung

Für eine genauere Oberflächencharakterisierung ist ein Verfahren nötig, das die gesamte Gleitfläche analysiert. Trotz einer umfangreichen Literatur- und Marktrecherche ist kein geeignetes Verfahren bekannt.

5.7. Zusammenfassung der Effekte einzelner Einflussgrößen

Bei ähnlichen Werkstoffen mit ähnlichen technischen Eigenschaften ist selbstverständlich kein Effekt zu erwarten. Die Effekte, die unter 5% liegen, gelten als rezessiv und sind vernachlässigbar.

Abb. 5.13.: Effekte der Einflussgrößen auf Verschleiß- und Wärmeverhalten

Die standardisierte Darstellung der Effekte in einem Pareto-Diagramm führt zur Erkenntnis, dass alle sechs aufgestellten Hypothesen als bekräftigt angesehen werden können.

6. Gesamtzusammenfassung und weiterführende Arbeiten

6.1. Anwendung des Modells und Praxisempfehlungen

6.1.1. Vorausgesetzte Eingangswerte

Bevor man an die Betriebsdauerberechnung eines Trapezgewindetriebes geht, sollte feststehen, welche Parameter in das Modell einfließen. Diese Parameter sind Betriebs-, Geometrie- und Stoffparameter.

Nachstehend werden die einzelnen Parameter näher erläutert.
6.1. Anwendung des Modells und Praxisempfehlungen

Definition der Betriebsparameter:
- Die Spindeldrehzahl \(n_s \) wird in der Regel fest programmiert und vom Servoantrieb an die Spindel übertragen.
- Die Hubhöhe \(H_H \) bezieht sich auf die Länge der Spindel im Hubbereich.
- Die Axialkraft \(F_A \) definiert eine Belastung, die axial auf die Leitmutter einwirkt.
- Die Stillstandszeit \(t_S \) beschreibt die Zeit, die während eines kurzen Anhaltens an den Richtungsumkehrpunkten vergeht.
- Die Hubzeit \(t_H \) wird während eines Hub- beziehungsweise Senkvorgangs verstrichen.
- Der Gleitweg \(S_L \) im Hubbereich bezieht sich auf die Helix und darf nicht mit der Spindellänge im Hubbereich verwechselt werden.
- Der kumulierte Gleitweg \(S_{hv} \) ist eine Aufsummierung von helixbezogenen Gleitwegen, die nach absolvierten Hub- und Senkbewegungen zurückgelegt werden.
- Die Pressung \(p \) beschreibt die Belastung, die auf die Projektionsflächen des Gewindes wirkt und sich nach der Formel 1.2 berechnet.

Definition der Geometrieparameter:
- Die Spindelkonvektionsfläche \(A_S \) im Hubbereich beschreibt die wärmeabgebende Fläche der Spindel und lässt sich aus CAD-Daten entnehmen. Zum Beispiel ein Längenmeter einer Tr14x3-Spindel weist eine Konvektionsfläche von 0,07868928m² auf, eine Tr20x4-Spindel verfügt über 0,1041691m² und eine Tr24x5-Spindel 0,12m².
- Tragende Länge der Mutter \(L_M \) ist ein Maß für die Länge des Innengewindes entlang der Gewindeachse.
- Geometrische Größen wie der Tragdurchmesser des Gewindes \(d_2 \), Gewindestirnbreite \(\delta_R \), Flankenüberdeckung \(H_1 \), Gewindesteigung \(h_3 \), Gewindeflankenhöhe \(h_3 \), Gewindesteigung \(P_h \) und Nenndurchmesser \(d \) sind in der Abbildung (Abb. 6.1.) definiert.

![Gewindegeometrie](image)

Abb. 6.1.: Gewindegeometrie
6. Gesamtzusammenfassung und weiterführende Arbeiten

Definition der Stoffparameter:

- Die Umgebungstemperatur \(T_u \) beschreibt die Temperatur des Umgebungsmediums und kann direkt an der Umgebungsluft gemessen werden.
- Kinematische Viskosität \(\nu \) des Umgebungsmediums sowie Prandtlzahl \(Pr \) und Wärmeleitfähigkeit \(\lambda \) sind druck- und temperaturabhängig und können aus einer Stoffwertetabelle (Tabelle 2) abgelesen werden.
- Die Wärmeleitfähigkeit des Stahls \(\lambda_R \) liegt je nach Sorte im Bereich von circa 40...68 W/m·K.

Tabelle 2: Stoffwerte von trockener Luft bei 1,013 bar nach [Wag11]

<table>
<thead>
<tr>
<th>(T_u) [°C]</th>
<th>(\lambda_u) [W/m·K]</th>
<th>(10^6 \cdot \nu) [m²/s]</th>
<th>(Pr [-])</th>
</tr>
</thead>
<tbody>
<tr>
<td>-50</td>
<td>0,0206</td>
<td>9,55</td>
<td>0,715</td>
</tr>
<tr>
<td>0</td>
<td>0,0243</td>
<td>13,30</td>
<td>0,711</td>
</tr>
<tr>
<td>20</td>
<td>0,0257</td>
<td>15,11</td>
<td>0,713</td>
</tr>
<tr>
<td>40</td>
<td>0,0271</td>
<td>16,97</td>
<td>0,711</td>
</tr>
<tr>
<td>60</td>
<td>0,0285</td>
<td>18,90</td>
<td>0,709</td>
</tr>
<tr>
<td>80</td>
<td>0,0299</td>
<td>20,94</td>
<td>0,708</td>
</tr>
<tr>
<td>100</td>
<td>0,0314</td>
<td>23,06</td>
<td>0,704</td>
</tr>
</tbody>
</table>

- Der Gleitreibungskoeffizient \(\mu_G \) liefert eine Aussage zum reibungsbedingten Wärmeeintrag in eine Gewindespindel und ermöglicht die Berechnung der Spindeltemperatur. Dieser Koeffizient ist bei Trapezgewindetrieben allerdings nicht immer konstant. Je nach Reibpaarung und Gleitflächencharakteristik nimmt er einen Erfahrungswert im Bereich von 0,08...0,12 an. In seltenen Fällen bis zu 0,18 und in sehr seltenen bis zu 0,2 und höher. Diese Werte gelten für die getesteten Muttern aus Polymeren, die auf Polyamid (PA) oder Polyoxymethylen (POM) basieren. Bei metallischen Muttern aus Kupfer-Zinn-Legierungen (CuSn) werden identische Werte beobachtet. Allerdings neigen die metallischen Reibpaarungen häufig zu sprunghaftem Reibungsanstieg kurz nach der Einlauffase. Dieses Phänomen deutet auf eine Adhäsionsreibung hin, die wesentlich intensiver als eine normale Gleitreibung verläuft. Weitere Gleitreibungskoeffizienten verschiedener Materialien auf einer Stahloberfläche können aus [Ash05] entnommen werden.

Hier kann die Angabe eines Bereichs als hinreichend angesehen werden, weil Verschleiß einen stochastischen Charakter hat. Aus eigenen Recherchen nach modellbezogenen Verschleißkoeffizienten für POM- und PA-basierten Polymeren, die auf Stahl gleiten, geht hervor, dass diese überwiegend im Bereich von \(10^{-4} \ldots 10^{-6}\) mm\(^3\)/Nm liegen (Tabelle 3).

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Lieferanten / Quellen</th>
<th>Verschleißkoeffizient</th>
</tr>
</thead>
<tbody>
<tr>
<td>POM-C</td>
<td>Wilhelm Herm. Müller GmbH & Co. KG</td>
<td>1,8 \times 10^{-4} [mm(^3)/Nm]</td>
</tr>
<tr>
<td>POM-C</td>
<td>KHP Kunststofftechnik e. K.</td>
<td>1,8 \times 10^{-4} [mm(^3)/Nm]</td>
</tr>
<tr>
<td>POM-C</td>
<td>Merrem PolyQuick GmbH</td>
<td>1,8 \times 10^{-4} [mm(^3)/Nm]</td>
</tr>
<tr>
<td>Murytal-C (POM)</td>
<td>Murtfeldt Kunststoffe GmbH & Co. KG</td>
<td>1,8 \times 10^{-4} [mm(^3)/Nm]</td>
</tr>
<tr>
<td>POM-C</td>
<td>Kern GmbH</td>
<td>5,4 \times 10^{-5} [mm(^3)/Nm]</td>
</tr>
<tr>
<td>PA66</td>
<td>Universität Erlangen</td>
<td>6,0 \times 10^{-6} [mm(^3)/Nm]</td>
</tr>
<tr>
<td>Zytel (PA)</td>
<td>DuPont de Nemours GmbH</td>
<td>4,5 \times 10^{-6} [mm(^3)/Nm]</td>
</tr>
<tr>
<td>PA66</td>
<td>Advanced Industrial</td>
<td>1,6 \times 10^{-6} [mm(^3)/Nm]</td>
</tr>
<tr>
<td>PA66</td>
<td>Universitäten Sydney und Kaiserslautern</td>
<td>7,0 \times 10^{-6} [mm(^3)/Nm]</td>
</tr>
<tr>
<td>Ultramid (PA)</td>
<td>BASF</td>
<td>4,5 \times 10^{-6} [mm(^3)/Nm]</td>
</tr>
</tbody>
</table>

Die Erfahrung zeigt jedoch, dass die Verschleißkoeffizienten für ähnliche Reibpaarungen, die in Trapezgewindetrieben verbaut sind, größtenteils einen Bereich von \(10^{-7} \ldots 10^{-9}\) mm\(^3\)/Nm aufweisen. Das heißt, dass modellbezogene Verschleißkoeffizienten bei näherungsweiser Übertragung auf ein Realsystem mit einem Korrekturfaktor 0,001 zu multiplizieren sind.

Aus eigenen Recherchen und Fachgesprächen mit anderen Tribologie-Experten lässt sich feststellen, dass Verschleißwerte, die an genormten und nicht genormten Tribometern ermittelt werden, im Vergleich zu realen tribotechnischen Systemen tendenziell höhere Verschleißkoeffizienten haben. Grund dafür sind nicht umfänglich vergleichbare Betriebsbedingungen.

Es ist anzumerken, dass die Gleitflächencharakteristik ein bedeutender Faktor ist, der den Verschleißkoeffizienten signifikant beeinflussen kann. Erfahrungsgemäß kann ein gleitflächenabhängiger Verschleißkoeffizient eine Abweichung um den Faktor 10 aufweisen (siehe Kapitel 5).
6. Gesamtzusammenfassung und weiterführende Arbeiten

6.1.2. Ablaufplan der Berechnung

Bei der Berechnung der Wärmeübergangscharakteristik müssen die Wärmeübergangszahlen an der Gewindegrundfläche, am Gewindefuß und anschließend die mittlere äquivalente Wärmeübergangszahl nach den Gleichungen 2.23, 2.24, 2.22 berechnet werden. Zusätzlich wird die in die Spindel induzierte Wärmestromdichte nach der Gleichung 2.21 berechnet. Die mittlere äquivalente Wärmeübergangszahl und die Wärmestromdichte fließen in die Berechnung der Spindeltemperatur ein.

Zur Prüfung der Wärmekriterien wird die Spindeltemperatur nach der Gleichung 2.20 ermittelt, die anschließend mit der zulässigen Betriebstemperatur zu vergleichen ist. Falls die berechnete Spindeltemperatur höher als die zulässige Betriebstemperatur ist, muss die Umgebungscharakteristik optimiert und die bisherigen Rechenschritte erneut durchgeführt werden.

Die eigentliche Berechnung der Verschleißprognose kann nur dann nach der Gleichung 2.2 erfolgen, wenn die berechnete Spindeltemperatur niedriger als die zulässige Betriebstemperatur ist.

Eine detaillierte und tabellarische Beispielberechnung befindet sich im Anhang A.
6.1. Anwendung des Modells und Praxisempfehlungen

Abb. 6.1.: Flussdiagramm zu einzelnen Rechenschritten
6. Gesamtzusammenfassung und weiterführende Arbeiten

6.2. Zusammenfassung

Das Kapitel beinhaltet die wichtigsten Antworten auf die zentralen Fragestellungen, die bereits mit dem vorhandenen Forschungsstand lösbar sind. Die Erkenntnisse aus empirischen Versuchen geben ein Resümee zu den aufgestellten Hypothesen.

Aus dem Stand der Technik und des Wissens lässt sich erkennen, dass die primären Fragestellungen zum Temperatur- und Verschleißverhalten von Trapezgewindetrieben mit vorhandenen Modellen zu bewerkstelligen sind.

Das aufgezeigte Modell gilt nur für Trapezgewindetriebe mit einer zur Umgebung offenen Gehäuseausführung. Das Gehäuse eines zur Umgebung abgeschlossenen Trapezgewindetriebes stellt einen spezifischen Wärmeübergang mathematisch höherer Ordnung dar und erfordert eine andere Berechnungsmethode, die hier aufgrund von beliebig unterschiedlichen Gehäusespezifikationen nicht behandelt wurde.

Für eine anwendungsorientierte Betriebsdauerberechnung von Trapezgewindetrieben ist das empirische Verschleißmodell von Archard sehr vorteilhaft. Das Modell basiert auf empirisch ermittelten Verschleißkoeffizienten und ermöglicht bei einem definierten Lastkollektiv die Lebensdauerberechnung.

Im Anhang A befindet sich ein praktisches Rechenbeispiel für die Anwendung des Modells zur analytischen Bestimmung der thermischen Leistungsfähigkeit von Trapezgewindetrieben mit anschließender Betriebsdauerberechnung.
6.3. Ausblick

Das Kapitel gibt den Überblick über mögliche Optionen für eine Projektfortsetzung. Die gewonnenen Forschungsergebnisse liefern die Hinweise zur weiteren Optimierung der Gleitflächen im Spindelfertigungsprozess. Sie sind für die praktische Anwendung sowie für die Auslegung empfehlenswert und haben ein Marketingpotenzial.

6.3.1. Methode der Gleitflächencharakterisierung

Aus der Untersuchung geht hervor, dass in der Verschleißberechnung die Berücksichtigung der verschleißbeeinflussenden Oberflächencharakteristik von Spindeloberflächen unerlässlich ist. Am Markt konnten bisher keine Geräte für die Gleitflächencharakterisierung gefunden werden, die den Anforderungen bei der Anwendung an Trapezgewinden entsprechen.

Das Verfahren zur Charakterisierung der Gewindegleitflächen sollte die Zugänglichkeit im kleinen Bauraum zwischen den Gewindeflanken berücksichtigen und die Oberflächenstruktur auf dem ganzen Gleitweg erfassen können.

Für diese Aufgabe sind optische Geräte wie ein 3D-Messmikroskop oder ein Laserscanner vielversprechend.

Eine definierte Gleitflächencharakteristik der Spindel kann einen Korrekturfaktor in der Lebensdauerberechnung beeinflussen.

6.3.2. Informationseinblendung auf Displayanzeige

Eine Lineareinheit mit einem Trapezgewindetrieb könnte über ein Display den Anwender über die restliche Betriebsdauer bis zur anstehenden Wartung informieren oder über den Status zur Einhaltung der thermischen Leistungsfähigkeit benachrichtigen.

Dabei können die vorgeschlagenen Modelle zur Temperatur- und Verschleißberechnung in die Recheneinheit einprogrammiert werden.

Es ist vorstellbar, dass über die Stromüberwachung der Antriebe und über eine kleine Recheneinheit zur Algorithmenberechnung die Idee mit vorhandenen technischen Komponenten realisierbar ist. Das kann für den Anwender einen Bedienungskomfort und einen nahezu kostenneutralen Mehrwert darstellen.
6. Gesamtzusammenfassung und weiterführende Arbeiten

6.3.3. Empfehlung für eingehauste Trapezgewindetriebe

Die vorgestellte Modellrechnung eignet sich nur für die zur Umgebung offenen Trapezgewindetriebe. Bei eingehausten Trapezgewindetrieben ist der direkte Wärmeaustausch der Gewindespindel mit der Umgebung unterbrochen, somit ist die wichtigste Voraussetzung für die Anwendung des vorgestellten Modells nicht erfüllt. In diesem Fall ist eine andere analytische Systembetrachtung oder eine konstruktive Modifikation des Gehäuses notwendig.

Im Anhang B werden zwei Lösungsansätze empfohlen, die perspektivisch als ein Gedankenansstoß für weitere experimentelle Untersuchungen dienen können. Im ersten Lösungsansatz wird eine Wärmebilanz aus eingehenden und ausgehenden Wärmestromen aufgestellt. Im zweiten Lösungsansatz ist eine Modifikation des Gehäuses durch zusätzliche Belüftungskomponenten vorgesehen.
Glossar

Abrasion: ritzender Materialabtrag an den Gleitflächen.

Adhäsion: reibungsbedingte Kaltverschweißung der Gleitpartner an Mikrokontakten mit anschließender Trennung der Haftverbindung.

Austenitisierung: Erwärmung der Metalle auf die Härtungstemperatur.

Blitztemperatur: starke, kurzzeitige Temperaturerhöhung im Reibkontakt.

Dissipation: Zerstreuung der Energie.

Dreikörperreibung: Reibung mit einem Körnchen zwischen den beiden Gleitflächen.

Elastizitätsmodul: ein Stoffwert, der bis zu einer bestimmten Temperatur relativ stabil ist und die Elastizität des Werkstoffes beschreibt.

Eingriffsverhältnis: ist das Verhältnis von nomineller Berührungsfläche zur Gesamtlauffläche.

Einlaufphase: tritt relativ kurzzeitig am Anfang des Verschleißvorgangs ein und führt zu einer gleichmäßigen Lastverteilung auf allen Gewindegängen der Leitmutter.

Fressverschleiß: adhäsive Wechselwirkungen bei einer Mangelschmierung.

Gleitflächencharakteristik: Charakteristik der Oberflächenbeschaffenheit insbesondere in Bezug auf vorhandene Oberflächenfehler und sonstige Unregelmäßigkeiten.

Inkubationsphase: weist nahezu keinen Verschleißfortschritt auf und deutet auf stattfindende Oberflächenzerstörung hin.

Kumulierter Gleitweg: die Aufsummierung einzelner Gleitwege zu einem gesamten Gleitweg.

Lastkollektiv: gleichzeitige Einwirkung der Belastungen (z.B.: Gleitgeschwindigkeit, Pressung, Temperatur) auf die Leitmutter.
<table>
<thead>
<tr>
<th>Glossar</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martensitbildung:</td>
<td>Bildung eines harten Gefüges nach raschem Abkühlen des Stahls.</td>
</tr>
<tr>
<td>Oberflächenzerrüttung:</td>
<td>reibungsbedingte Oberflächenermüdung mit folgender Rissbildung.</td>
</tr>
<tr>
<td>Prandtlzahl:</td>
<td>druck- und temperaturabhängiger Stoffwert eines Fluides.</td>
</tr>
<tr>
<td>Progressive Phase:</td>
<td>tritt am Ende des Verschleißvorgangs ein und weist eine ansteigende Verschleißintensität bis zum Funktionsausfall auf.</td>
</tr>
<tr>
<td>Referenzwert:</td>
<td>ein Wert, mit dem alle anderen Werte zu vergleichen sind.</td>
</tr>
<tr>
<td>Reynoldszahl:</td>
<td>beschreibt die Charakteristik einer Strömung.</td>
</tr>
<tr>
<td>Stationäre Phase:</td>
<td>folgt nach der Einlaufphase mit stetig steigendem Verschleiß.</td>
</tr>
<tr>
<td>Stick-Slip-Effekt:</td>
<td>ruckartiges Gleiten.</td>
</tr>
<tr>
<td>Tribosystem:</td>
<td>ein Trapezgewindetrieb mit allen seinen Elementen und deren gegenseitigen Wechselwirkungen.</td>
</tr>
<tr>
<td>Triboxid:</td>
<td>ist eine amorphe tribochemische Oxidationsschicht, die bei hoher Reibung und hoher Temperatur entsteht und verschleißmildernd wirkt.</td>
</tr>
<tr>
<td>Verschleißintensität:</td>
<td>ist ein Differenzbetrag der Verschleißschädigung, der nach einem zurückgelegten Gleitweg entsteht.</td>
</tr>
<tr>
<td>Verschleißkoeffizient:</td>
<td>entsteht durch die Normierung der Verschleißintensität für die Pressung und beschreibt volumetrischen Verschleiß pro induzierte Reibungsenergie.</td>
</tr>
<tr>
<td>Vertrauensgrad:</td>
<td>beschreibt den prozentuell definierten Bereich in dem sich die meisten (Mess-) Werte befinden.</td>
</tr>
<tr>
<td>Werkstoffähnlichkeit:</td>
<td>ähnliche Werkstoffe mit ähnlichen technischen Eigenschaften.</td>
</tr>
</tbody>
</table>
Literatur

[Mur18] Murtfeldt Kunststoffe GmbH & Co. KG: Technische Daten Murytal C produziert auf Basis POM-C, Dortmund 2018

[Paw09] Павлов, В.Г.: Выбор и обоснование расчётной модели для оценки ресурса работы трибосопряжения по условию предельно допустимого износа. Вестник научно-технического развития, Национальная Технологическая Группа, Институт машиноведения РАН, Россия, Москва, УДК 531.4, No 5 (21), 2009, C. 75ff

[Rat64] Ratner, S. B.; Farberova, I. I.; Radyukevich, O. V.; Lure, E. G.: Connection between wear resistance of plastics and other mechanical properties. Soviet Plastics, 12(7), S37ff, 1964

Literatur

[Wol18] Wolf Kunststoffgleitlager GmbH: Datenblatt ZX 530, DE 1.0, Kerpen 2018

Normen

DIN 103 Metrisches ISO-Trapezgewinde. Teil 1, Beuth-Verlag, Berlin, April 1977

DIN 3996 Tragfähigkeitsberechnung von Zylinder-Schneckengetrieben mit sich rechtwinklig kreuzenden Achsen. Beuth-Verlag, September 2012

ISO 7902-1 Hydrodynamische Radial-Gleitlager im stationären Betrieb - Kreiszylinderlager - Teil 1: Berechnung, November 2013

DIN 31652-3 Hydrodynamische Radial-Gleitlager im stationären Betrieb - Betriebsrichtwerte für die Berechnung von Kreiszylinderlagern. Beuth-Verlag, Berlin, April 1983

Anhang A: Beispielrechnung für thermische Leistungsfähigkeit und Verschleiß

A.a. Günstiger Fall

Gegebene Gewindegeometrie und Betriebsbedingungen:
Tr20x4/ZX530/E295+C/Montageschmierung MoS₂

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spindeldrehzahl</td>
<td>(n_s = 400) 1/min</td>
</tr>
<tr>
<td>Hubhöhe</td>
<td>(H_h = 1,5) m</td>
</tr>
<tr>
<td>Spindelkonvektionsfläche im Hubbereich</td>
<td>(A_s = 0,1562) m²</td>
</tr>
<tr>
<td>Tragdurchmesser Gewinde</td>
<td>(d_2 = 0,018) m</td>
</tr>
<tr>
<td>Umgebungstemperatur</td>
<td>(T_U = 298,15) K</td>
</tr>
<tr>
<td>Kinematische Viskosität Luft</td>
<td>(\nu_L = 15,328 \cdot 10^{-6}) m²/s</td>
</tr>
<tr>
<td>Prandtlzahl Luft</td>
<td>(Pr = 0,7) -</td>
</tr>
<tr>
<td>Wärmeleitfähigkeit Luft</td>
<td>(\lambda_L = 0,0256) W/mK</td>
</tr>
<tr>
<td>Wärmeleitfähigkeit der Rippe aus Stahl</td>
<td>(\lambda_R = 54) W/mK</td>
</tr>
<tr>
<td>Gewindestirn-/Rippenbreite</td>
<td>(\delta_R = 0,002) m</td>
</tr>
<tr>
<td>Flankenüberdeckung</td>
<td>(H_1 = 0,002) m</td>
</tr>
<tr>
<td>Gewindeflanken-/Rippenhöhe</td>
<td>(h_3 = 0,00225) m</td>
</tr>
<tr>
<td>Gewindesteigung (\triangleq) Rippenlementlänge</td>
<td>(p_h \triangleq t = 0,004) m</td>
</tr>
<tr>
<td>Nenndurchmesser</td>
<td>(d = 0,02) m</td>
</tr>
<tr>
<td>Tragende Länge der Leitmutter</td>
<td>(L_M = 0,056) m</td>
</tr>
<tr>
<td>Axialkraft</td>
<td>(F_A = 3109,77) N</td>
</tr>
<tr>
<td>Gleitreibungszahl</td>
<td>(\mu_G = 0,1\pm0,02) -</td>
</tr>
<tr>
<td>Stillstandszeit an Umkehrpunkten</td>
<td>(t_s = 1) s</td>
</tr>
<tr>
<td>Hubzeit</td>
<td>(t_H = 56,25) s</td>
</tr>
<tr>
<td>Gleitweg/Helix im Hubbereich</td>
<td>(S_L = 21,24) m</td>
</tr>
<tr>
<td>Kumulierter Gleitweg (ca.15000 Doppelhübe)</td>
<td>(S_{hv} = 637,440) km</td>
</tr>
<tr>
<td>Pressung</td>
<td>(p = 1,96) N/mm²</td>
</tr>
<tr>
<td>Volumenbezogener Verschleißkoeffizient</td>
<td>(k_V = 2,9\pm1,4 \cdot 10^{-8}) mm³/Nm</td>
</tr>
</tbody>
</table>

Rechenschritte:

1) Berechnung der Reynoldszahl nach Gleichung 2.28

\[Re = \frac{w \cdot d}{\nu_L} \quad \text{mit} \quad w = \pi \cdot d \cdot n_s \]

\[Re = \frac{\pi \cdot (0,2m)^2 \cdot 400[1/\text{min}]}{15,328 \cdot 10^{-6}[\text{m}^2/\text{s}]} = 546,55 \]
2) Prüfung des Gültigkeitsbereichs $10 < Re < 10^7$; $0,6 < Pr < 1000$

$10 < 546,55 < 10^7$; $0,6 < 0,7 < 1000$

3) Berechnung des laminaren Strömungsanteils nach Gleichung 2.26

$$Nu_{R, lam} = 0,664 \cdot \sqrt{Re} \cdot \frac{1}{Pr}$$

$$Nu_{R, lam} = 0,664 \cdot \sqrt{546,55} \cdot \frac{1}{0,7} = 13,78$$

4) Berechnung des turbulenten Strömungsanteils nach Gleichung 2.27

$$Nu_{R, tur} = \frac{0,037 \cdot Re^{0,8} \cdot Pr}{1 + 2,443 \cdot Re^{-0,1} \cdot (Pr^{2/3} - 1)}$$

$$Nu_{R, tur} = \frac{0,037 \cdot 546,55^{0,8} \cdot 0,7}{1 + 2,443 \cdot 546,55^{-0,1} \cdot (0,7^{2/3} - 1)} = 5,53$$

5) Berechnung der Nußeltzahl nach Gleichung 2.25

$$Nu_R = 0,3 + \sqrt{Nu_{R, lam}^2 + Nu_{R, tur}^2}$$

$$Nu_R = 0,3 + \sqrt{13,78^2 + 5,53^2} = 15,15$$

6) Berechnung der Wärmeübergangszahl der Grundfläche nach Gleichung 2.23

$$\alpha_g = \frac{Nu_R \cdot \lambda_L}{\frac{\pi}{2} \cdot d}$$

$$\alpha_g = \frac{15,15 \cdot 0,0256[W/mK]}{\frac{\pi}{2} \cdot 0,02[m]} = 12,34 \frac{W}{m^2K}$$
7) Berechnung scheinbarer Wärmeübergangszahl am Rippenfuß nach Gleichung 2.24

\[
\alpha_R = \frac{2 \cdot \alpha_G \cdot \lambda_R \cdot \tanh \left(\frac{2 \cdot \alpha_G \cdot \lambda_R \cdot h_3}{\delta_R \cdot \lambda_R} \right)}{\sqrt{\frac{2 \cdot 12,34 \cdot W}{m^2 K} \cdot \frac{W}{m K}}} \cdot 54 \left[\frac{W}{m^2 K} \right] \cdot \tanh \left(\frac{2 \cdot 12,34 \cdot W}{0,002[m] \cdot 54 \left[\frac{W}{m^2 K} \right]} \cdot 0,00225[m] \right) = 27,77 \frac{W}{m^2 K}
\]

8) Berechnung mittlerer äquivalenter Wärmeübergangszahl nach Gleichung 2.22

\[
\bar{\alpha} = \alpha_R \cdot \frac{\delta_R}{t} + \alpha_G \cdot \left(1 - \frac{\delta_R}{t} \right)
\]

\[
\bar{\alpha} = 27,77 \left[\frac{W}{m^2 K} \right] \cdot \frac{0,002[m]}{0,004[m]} + 12,34 \left[\frac{W}{m^2 K} \right] \cdot \left(1 - \frac{0,002[m]}{0,004[m]} \right) = 20,06 \frac{W}{m^2 K} \pm \alpha_w
\]

9) Berechnung der Wärmestromdichte nach Gleichung 2.21

\[
q_s = \frac{\mu_G \cdot F_N}{A_s} \cdot \frac{S_l}{t_H + t_s} \quad \text{mit} \quad F_N \approx F_A
\]

Zur Auswahl stehen folgende empirisch ermittelte Gleitreibungszahlen:

- \(\mu_G = 0,12 \pm 0,02 \) Polymer-Mutter, Stahl-Spindel des Zustands +SH
- \(\mu_G = 0,10 \pm 0,02 \) Polymer-Mutter, Stahl-Spindel des Zustands +C
- \(\mu_G = 0,10 \pm 0,03 \) Metall-Mutter, Stahl-Spindel des Zustands +SH
- Mit Polymeren ZX530, Murythal-C
- Mit Metallen G-CuSn7ZnPb, Gz-CuSn12, CW713R
- Mit Stählen E295, C15
- Alle Reibpaarungen mit einer Montageschmierung aus MoS₂
- Grad des Vertrauens 95%

\[
q_s = \frac{(0,10 \pm 0,02) \cdot 3109,77[N]}{0,1562[m^2]} \cdot \frac{21,24[m]}{56,25[s] + 1[s]} = 738,65 \pm 147,73 \left[\frac{W}{m^2} \right]
\]
10) Berechnung der Spindeltemperatur nach umgestellter Gleichung 2.20

\[q_s = \frac{W_R}{(T_H + T_S) \cdot A_s} = a_w \cdot (T_S - T_U) \]

\[T_S = \frac{1}{20,06} \left(\frac{W}{m^2 K} \right) \left(738,65 \pm 147,73 \right) \left[\frac{W}{m^2} \right] + 298,15[K] = 62 \pm 8^\circ C \]

bei einem Grad des Vertrauens von 95%
Eine Verschleißberechnung ist nur dann sinnvoll wenn die analytisch berechnete Spindeltemperatur kleiner als die maximal zulässige Betriebstemperatur der Leitmutter beziehungsweise des Schmierstoffes ist. Erfahrungsgemäß liegen die kritischen Betriebstemperaturen allgemein bei circa 90°C.

11) Verschleißberechnung des Trapezgewindetriebes nach Gleichung 2.2

\[h_V = k_V \cdot p \cdot S_{hv} \]

Zur Auswahl stehen folgende empirisch ermittelte Verschleißkoeffizienten:

<table>
<thead>
<tr>
<th>Gewindeart/Mutterwerkstoff/Spindelwerkstoff + Zustand/Montageschmierung</th>
<th>Grad des Vertrauens 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tr24x5/ZX530/E295+SH/MoS2</td>
<td>k_V = (1,5±0,5)·10^{-7}[mm^3/Nm]</td>
</tr>
<tr>
<td>Tr14x3/ZX530/E295+SH/MoS2</td>
<td>k_V = (8,4±6,9)·10^{-8}[mm^3/Nm]</td>
</tr>
<tr>
<td>Tr20x4/ZX530/E295+SH/MoS2</td>
<td>k_V = (1,3±0,4)·10^{-7}[mm^3/Nm]</td>
</tr>
<tr>
<td>Tr20x4/ZX530/E295+C/MoS2</td>
<td>k_V = (2,9±1,4)·10^{-8}[mm^3/Nm]</td>
</tr>
<tr>
<td>Tr20x4/Murithal/E295+C/MoS2</td>
<td>k_V = (3,0±1,4)·10^{-8}[mm^3/Nm]</td>
</tr>
<tr>
<td>Tr20x4/ZX530/C15+C/MoS2</td>
<td>k_V = (2,2±2,6)·10^{-8}[mm^3/Nm]</td>
</tr>
<tr>
<td>Tr20x4/Murithal/C15+C/MoS2</td>
<td>k_V = (1,8±0,3)·10^{-8}[mm^3/Nm]</td>
</tr>
<tr>
<td>Tr20x4/Murithal/C15+C Sichelformfehler/MoS2</td>
<td>k_V = (2,0±1,2)·10^{-7}[mm^3/Nm]</td>
</tr>
<tr>
<td>Tr20x4/Rg7/E295+SH/MoS2</td>
<td>k_V = (3,2±6,6)·10^{-5}[mm^3/Nm]</td>
</tr>
<tr>
<td>Tr20x4/Sn12/E295+SH/MoS2</td>
<td>k_V = (3,0±2,2)·10^{-6}[mm^3/Nm]</td>
</tr>
<tr>
<td>Tr20x4/CW713R/E295+SH/MoS2</td>
<td>k_V = (2,9±3,7)·10^{-5}[mm^3/Nm]</td>
</tr>
</tbody>
</table>

\[h_V = (2,9 \pm 1,4)10^{-8} \left[\frac{mm^3}{Nm} \right] \cdot 1,96 \left[\frac{N}{mm^2} \right] \cdot 637440[m] = 0,04 \pm 0,02[mm] \]
bei einem Grad des Vertrauens von 95%

12) Falls beim Trapezgewindetrieb die Einlaufphase bevorsteht, ist es empfehlenswert zusätzlich zu stationärphasenbezogener Verschleißhöhe \(h_V \) die einlaufphasenbezogene Verschleißhöhe \(h_{VE} \) hinzu zu addieren. Der Erfahrungswert für die Verschleißseinlaufhöhe bei einem Grad des Vertrauens von 95% beträgt allgemein \(h_{VE} = 0,07 \pm 0,06 [mm] \).

Bei ungünstigen Betriebsbedingungen können die Trapezgewindetriebe ausfallen.
Anhang A: Beispielrechnung für thermische Leistungsfähigkeit und Verschleiß

A.b. Ungünstiger Fall (Tabellarisch)

Hier wird ein identischer Gewindetrieb bei halber Hubhöhe und aufgrund des Spindelzustandes „+SH“ bei erhöhter Gleitreibungszahl betrieben. Da die Berechnung genauso wie im vorigen Beispiel abläuft sind nachfolgend nur die Endergebnisse tabellarisch aufgeführt.

Gegebene Gewindegeometrie und Betriebsbedingungen:
Tr20x4/ZX530/E295+SH/Montageschmierung MoS₂

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spindeldrehzahl</td>
<td>(n_S)</td>
<td>400</td>
</tr>
<tr>
<td>Hubhöhe</td>
<td>(H_H)</td>
<td>0,75</td>
</tr>
<tr>
<td>Spindelkonvektionsfläche im Hubbereich</td>
<td>(A_S)</td>
<td>0,0781</td>
</tr>
<tr>
<td>Tragdurchmesser Gewinde</td>
<td>(d_2)</td>
<td>0,018</td>
</tr>
<tr>
<td>Umgebungstemperatur</td>
<td>(T_U)</td>
<td>298,15</td>
</tr>
<tr>
<td>Kinematische Viskosität Luft</td>
<td>(\nu_L)</td>
<td>(15,328 \cdot 10^{-6})</td>
</tr>
<tr>
<td>Prandtlzahl Luft</td>
<td>(Pr)</td>
<td>0,7</td>
</tr>
<tr>
<td>Wärmeleitfähigkeit Luft</td>
<td>(\lambda_L)</td>
<td>0,0256</td>
</tr>
<tr>
<td>Wärmeleitfähigkeit der Rippe aus Stahl</td>
<td>(\lambda_R)</td>
<td>54</td>
</tr>
<tr>
<td>Gewindestirn-/Rippenbreite</td>
<td>(\delta_R)</td>
<td>0,002</td>
</tr>
<tr>
<td>Flankenüberdeckung</td>
<td>(H_1)</td>
<td>0,002</td>
</tr>
<tr>
<td>Gewindeflanken-/Rippenhöhe</td>
<td>(h_3)</td>
<td>0,00225</td>
</tr>
<tr>
<td>Gewindesteigung (\triangleq) Rippenelementlänge</td>
<td>(p_h \triangleq t)</td>
<td>0,004</td>
</tr>
<tr>
<td>Nenndurchmesser</td>
<td>(d)</td>
<td>0,02</td>
</tr>
<tr>
<td>Tragende Länge der Leitmutter</td>
<td>(L_M)</td>
<td>0,056</td>
</tr>
<tr>
<td>Axialkraft</td>
<td>(F_A)</td>
<td>3109,77</td>
</tr>
<tr>
<td>Gleitreibungszahl</td>
<td>(\mu_G)</td>
<td>0,12±0,02</td>
</tr>
<tr>
<td>Stillstandszeit an Umkehrpunkten</td>
<td>(t_s)</td>
<td>1</td>
</tr>
<tr>
<td>Hubzeit</td>
<td>(t_H)</td>
<td>28,125</td>
</tr>
<tr>
<td>Gleitweg/Helix im Hubbereich</td>
<td>(S_L)</td>
<td>10,62</td>
</tr>
</tbody>
</table>

Berechnet:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reynoldszahl</td>
<td>(Re)</td>
<td>546,55</td>
</tr>
<tr>
<td>Laminarer Strömungsanteil</td>
<td>(Nu_{R,\text{lam}})</td>
<td>13,78</td>
</tr>
<tr>
<td>Turbulenter Strömungsanteil</td>
<td>(Nu_{R,\text{tur}})</td>
<td>5,53</td>
</tr>
<tr>
<td>Nußeltzahl</td>
<td>(Nu_R)</td>
<td>15,15</td>
</tr>
<tr>
<td>Wärmeübergangszahl der Grundfläche</td>
<td>(\alpha_G)</td>
<td>12,34</td>
</tr>
<tr>
<td>Wärmeübergangszahl am Rippenfuß</td>
<td>(\alpha_R)</td>
<td>27,77</td>
</tr>
<tr>
<td>Mittlere äquivalente Wärmeübergangszahl</td>
<td>(\bar{\alpha})</td>
<td>20,06</td>
</tr>
<tr>
<td>Wärmestromdichte</td>
<td>(q_S)</td>
<td>1742,4±290,4</td>
</tr>
<tr>
<td>Spindeltemperatur(Grad des Vertrauens 95%)</td>
<td>(T_S)</td>
<td>112 ±15</td>
</tr>
</tbody>
</table>

Hier ist die analytisch berechnete Spindeltemperatur zu hoch. Dabei kann eine temperaturbedingte Werkstoffveränderung und folglich eine Erweichung oder

Die Formeln können in eine Excel-Tabelle einprogrammiert werden. Zum Vergleich der Excel-Ergebnisse sind nachstehend zwei Beispiele für die Gewinde Tr24x5 und Tr14x3 dargestellt.
Anhang A: Beispielrechnung für thermische Leistungsfähigkeit und Verschleiß

A.c. Excel-Ergebnisse für Tr24x5 (Tabellarisch)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert 1</th>
<th>Wert 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spindeldrehzahl</td>
<td>n_S</td>
<td>338</td>
</tr>
<tr>
<td>Hubhöhe</td>
<td>H_H</td>
<td>0,98742</td>
</tr>
<tr>
<td>Spindelkonvektionsfläche im Hubbereich</td>
<td>A_S</td>
<td>0,11849</td>
</tr>
<tr>
<td>Tragdurchmesser Gewinde</td>
<td>d_2</td>
<td>0,0213</td>
</tr>
<tr>
<td>Umgebungstemperatur</td>
<td>T_U</td>
<td>298,15</td>
</tr>
<tr>
<td>Kinematische Viskosität Luft</td>
<td>ν_L</td>
<td>$15,328 \cdot 10^{-6}$</td>
</tr>
<tr>
<td>Prandtlzahl Luft</td>
<td>Pr</td>
<td>0,7</td>
</tr>
<tr>
<td>Wärmeleitfähigkeit Luft</td>
<td>λ_L</td>
<td>0,0256</td>
</tr>
<tr>
<td>Wärmeleitfähigkeit der Rippe aus Stahl</td>
<td>λ_R</td>
<td>54</td>
</tr>
<tr>
<td>Gewindestirn-/Rippenbreite</td>
<td>δ_R</td>
<td>0,0025</td>
</tr>
<tr>
<td>Flankenüberdeckung</td>
<td>H_1</td>
<td>0,0025</td>
</tr>
<tr>
<td>Gewindeflanken-/Rippenhöhe</td>
<td>h_3</td>
<td>0,00275</td>
</tr>
<tr>
<td>Gewindesteigung \equiv Rippenelementlänge</td>
<td>$P_h \triangleq t$</td>
<td>0,005</td>
</tr>
<tr>
<td>Nenndurchmesser</td>
<td>d</td>
<td>0,024</td>
</tr>
<tr>
<td>Tragende Länge der Leitmutter</td>
<td>L_M</td>
<td>0,03686</td>
</tr>
<tr>
<td>Axialkraft</td>
<td>F_A</td>
<td>2422,39</td>
</tr>
<tr>
<td>Gleitreibungszahl</td>
<td>μ_G</td>
<td>0,08</td>
</tr>
<tr>
<td>Stillstandszeit an Umkehrpunkten</td>
<td>t_S</td>
<td>1</td>
</tr>
<tr>
<td>Hubzeit</td>
<td>t_H</td>
<td>35,056</td>
</tr>
<tr>
<td>Gleitweg/Helix im Hubbereich</td>
<td>S_L</td>
<td>13,24</td>
</tr>
<tr>
<td>Kumulierter Gleitweg</td>
<td>S_{hv}</td>
<td>637,440</td>
</tr>
<tr>
<td>Pressung</td>
<td>p</td>
<td>1,96</td>
</tr>
<tr>
<td>Volumenbezogener Verschleißkoeffizient</td>
<td>k_v</td>
<td>$1,5 \cdot 10^{-7}$</td>
</tr>
</tbody>
</table>

Berechnet:

Reynoldszahl | Re | 665,04 | - |
Laminarer Strömungsanteil | $Nu_{R,lam}$ | 15,20 | - |
Turbulenter Strömungsanteil | $Nu_{R,tur}$ | 6,42 | - |
Nußeltzahl | Nu_R | 16,80 | - |
Wärmeübergangszahl der Grundfläche | α_G | 11,41 | W/m²K |
Wärmeübergangszahl am Rippenfuß | α_R | 25,09 | W/m²K |
Mittlere äquivalente Wärmeübergangszahl | $\bar{\alpha}$ | 18,25 | W/m²K |
Wärmestromdichte | q_S | 600,78 | W/m² |
Spindeltemperatur | T_S | 57,9 | °C |
Verschleißhöhe | h_V | 0,187 | mm |

Zur besseren Übersichtlichkeit und Nachvollziehbarkeit werden hier nur Zahlenwerte ohne Unsicherheitsabweichungen aufgeführt.
A.d. Excel-Ergebnisse für Tr14x3 (Tabellarisch)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spindeldrehzahl (n_s)</td>
<td>581 \text{1/min}</td>
</tr>
<tr>
<td>Hubhöhe (H_H)</td>
<td>1,0175 \text{m}</td>
</tr>
<tr>
<td>Spindelkonvektionsfläche im Hubbereich (A_S)</td>
<td>0,08006 \text{m}²</td>
</tr>
<tr>
<td>Tragdurchmesser Gewinde (d_2)</td>
<td>0,0124 \text{m}</td>
</tr>
<tr>
<td>Umgebungstemperatur (T_U)</td>
<td>298,15 \text{K}</td>
</tr>
<tr>
<td>Kinematische Viskosität Luft (\nu_L)</td>
<td>15,328 \cdot 10^{-6} \text{m}²/s</td>
</tr>
<tr>
<td>Prandtlzahl Luft (Pr)</td>
<td>0,7</td>
</tr>
<tr>
<td>Wärmeleitfähigkeit Luft (\lambda_L)</td>
<td>0,0256 \text{W/mK}</td>
</tr>
<tr>
<td>Wärmeleitfähigkeit der Rippe aus Stahl (\lambda_R)</td>
<td>54 \text{W/mK}</td>
</tr>
<tr>
<td>Gewindestirn-/Rippenbreite (\delta_R)</td>
<td>0,0015 \text{m}</td>
</tr>
<tr>
<td>Flankenüberdeckung (H_1)</td>
<td>0,0015 \text{m}</td>
</tr>
<tr>
<td>Gewindeflanken-/Rippenhöhe (h_3)</td>
<td>0,00175 \text{m}</td>
</tr>
<tr>
<td>Gewindesteigung (P_h) \equiv \text{Rippenelementlänge}</td>
<td>0,003 \text{m}</td>
</tr>
<tr>
<td>Nenndurchmesser (d)</td>
<td>0,014 \text{m}</td>
</tr>
<tr>
<td>Tragende Länge der Leitmutter (l_M)</td>
<td>0,03798 \text{m}</td>
</tr>
<tr>
<td>Axialkraft (F_A)</td>
<td>1453,18 \text{N}</td>
</tr>
<tr>
<td>Gleitreibungszahl (\mu_G)</td>
<td>0,08</td>
</tr>
<tr>
<td>Stillstandszeit an Umkehrpunkten (t_s)</td>
<td>1 \text{s}</td>
</tr>
<tr>
<td>Hubzeit (t_H)</td>
<td>35,025 \text{s}</td>
</tr>
<tr>
<td>Gleitweg/Helix im Hubbereich (S_L)</td>
<td>13,24 \text{m}</td>
</tr>
<tr>
<td>Kumulierter Gleitweg (S_{hv})</td>
<td>637,440 \text{km}</td>
</tr>
<tr>
<td>Pressung (p)</td>
<td>1,96 \text{N/mm}²</td>
</tr>
<tr>
<td>Volumenbezogener Verschleißkoeffizient (k_v)</td>
<td>8,4 \cdot 10^{-8} \text{mm}³/Nm</td>
</tr>
</tbody>
</table>

Berechnet:

- Reynoldszahl \(Re \) 388,99
- Laminarer Strömungsanteil \(Nu_{R,\text{lam}} \) 11,62
- Turbulenter Strömungsanteil \(Nu_{R,\text{tur}} \) 4,27
- Nußeltzahl \(Nu_R \) 12,68
- Wärmeübergangszahl der Grundfläche \(\alpha_G \) 14,77 \text{W/m}²K
- Wärmeübergangszahl am Rippenfuß \(\alpha_R \) 34,45 \text{W/m}²K
- Mittlere äquivalente Wärmeübergangszahl \(\bar{\alpha} \) 24,61 \text{W/m}²K
- Wärmestromdichte \(q_S \) 533,82 \text{W/m}²
- Spindeltemperatur \(T_S \) 46,7 °C
- Verschleißhöhe \(h_V \) 0,105 \text{mm}

Zur besseren Übersichtlichkeit und Nachvollziehbarkeit werden hier nur Zahlenwerte ohne Unsicherheitsabweichungen aufgeführt.
Anhang B: Empfehlungen zu eingehausten Trapezgewindetrieben

B.a. Aufstellung der Wärmebilanz

Beim ersten Lösungsansatz kann die zugeführte reibungsbedingte Leistung \(W_R/(t_H + t_S) \) mit dem Wärmestrom \([\alpha_w \cdot A_G \cdot \Delta T]\) verglichen werden, der über die freie Konvektion von der Gehäusefläche an die Umgebung abgeführt wird. Dabei darf die reibungsbedingte Wärmeleistung nicht höher als der abgeführte Wärmestrom sein:

\[
\frac{W_R}{(t_H + t_S)} < \alpha_w \cdot A_G \cdot \Delta T
\]

Die Reibungsarbeit \(W_R \) kann über eine zwischen der Spindel und dem Antrieb geschaltete Drehmomentmesswelle oder über die Stromüberwachung des Antriebes ermittelt werden. Die Hubzeit \(t_H \) und die Stillstandszeit \(t_S \) sind in den Steuerungsparametern des Antriebes definiert. Die Wärmeübergangszahl \(\alpha_w \) ist für jedes Gehäuse spezifisch und kann entweder über eine Computersimulation abgeschätzt werden. Oder näherungsweise kann auch \(\alpha_w = 7 + 12 \cdot \sqrt{w} \) mit \(w = 1,2 m/s \) angenommen werden [Bar93]. Die Temperaturdifferenz \(\Delta T \) zwischen der Gehäuseoberfläche \(A_G \) und der Umgebung kann relativ einfach messtechnisch erfasst werden.
B.b. Modifikation des Gehäuses

$$Re = \frac{w \cdot d}{v_L} \quad \text{mit} \quad w = \pi \cdot d \cdot n_s + w_u$$

Diese Luftgeschwindigkeitskomponente ist allerdings noch nicht bekannt, weil sie von den düsenartigen Öffnungen im Gehäuseprofil und von der Hubgeschwindigkeit abhängig ist. Für eine näherungsweise Berechnung dieser Luftgeschwindigkeitskomponente sollte man mindestens 1,2m/s annehmen [Bar93].

Ein Gehäuse kann sich erwärmen und je nach umgesetzter reibungsbedingter Wärmeleistung erfahrungsgemäß in den Temperaturbereichen von circa 40°C bis über 60°C liegen. Daher ist es in beiden näherungsweisen Lösungsansätzen sinnvoll die Wärmestrahlung und Wärmeleitung geringfügigkeitsbedingt zu vernachlässigen.