Improved Operating Parameters for Hydrogen Peroxide-Generating Gas Diffusion Electrodes

Thorben Muddemann1,*, Dennis R. Haupt2, Michael Sievers2, and Ulrich Kunz1

DOI: 10.1002/cite.201900137

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Supporting Information available online

The influence of process parameters on the \(\text{H}_2\text{O}_2 \) yield of gas diffusion electrodes (GDE) are investigated. The investigated GDEs consist of Vulcan XC72 carbon black and PTFE on gold-plated nickel wire cloth. An electrolysis cell is used to evaluate the influence of various process parameters, such as temperature, pH value, oxygen pressure and stoichiometric factor, electrolyte flow regime, current density and separator material at steady-state conditions. It is found that the investigated GDE enables current efficiencies greater than 90\% at up to 2 kA m\(^{-2}\), whereby lower electrolyte temperatures and higher pH values contribute to higher \(\text{H}_2\text{O}_2 \) yields above 90\% current efficiency.

Keywords: Electrolysis, Gas diffusion electrode, Hydrogen peroxide, \(\text{H}_2\text{O}_2 \) synthesis

Received: September 11, 2019; **revised:** December 18, 2019; **accepted:** February 10, 2020

1 Introduction

Hydrogen peroxide (\(\text{H}_2\text{O}_2 \)) is widely used for oxidation reactions with the advantage to decompose to environmentally friendly and non-toxic products \[1\]. At present, the industrial production is based on the anthraquinone process \[2\], but the electrochemical in situ generation of \(\text{H}_2\text{O}_2 \) enables other applications, especially in wastewater treatment \[3, 4\]. An innovative concept to reduce organic contamination is the combination of a hydroxyl radical generating boron-doped diamond (BDD) anode and a cathodic \(\text{H}_2\text{O}_2 \)-producing gas diffusion electrode (\(\text{H}_2\text{O}_2 \)-GDE) \[5\]. Such a double oxidant generating system is not commercially available yet, probably due to commercially unavailable high-yielding \(\text{H}_2\text{O}_2 \)-GDEs applicable at higher current densities. Higher current densities are important, especially to minimize the active electrode area and, thus, minimizing the expenses for cost-intensive BDD anodes \[6, 7\]. High yields are also necessary for an improved economic efficiency of the in situ generation of \(\text{H}_2\text{O}_2 \). At present, only GDEs in small laboratory scales are available \[8, 9\]. Therefore, a high-yielding \(\text{H}_2\text{O}_2 \)-GDE has been developed and its performance is optimized by systematic process parameter variation in this study.

The electrochemical synthesis of \(\text{H}_2\text{O}_2 \) at GDEs is done by the reduction of oxygen and water via the two-electron step (Eqs. (1) and (4)), which is competitive with the four-electron step (Eqs. (2) and (5)) and the electrochemical \(\text{H}_2\text{O}_2 \) reduction (Eq. (3)). \(\text{H}_2\text{O}_2 \) deprotonation (Eq. (6)) and hydrogen evolution (Eq. (7)) form further side reactions \[10–13\].

\begin{align*}
\text{O}_2 + 2\text{H}^+ + 2e^- & \rightleftharpoons \text{H}_2\text{O}_2 \quad (E^0 = 0.695V) \tag{1} \\
\text{O}_2 + 4\text{H}^+ + 4e^- & \rightleftharpoons 2\text{H}_2\text{O} \quad (E^0 = 1.229V) \tag{2} \\
\text{H}_2\text{O}_2 + 2\text{H}^+ + 2e^- & \rightleftharpoons 2\text{H}_2\text{O} \quad (E^0 = 1.776V) \tag{3} \\
\text{O}_2 + 2\text{H}_2\text{O} + 2e^- & \rightleftharpoons \text{H}_2\text{O}_2 + 2\text{OH}^- \quad (E^0 = -0.146V) \tag{4} \\
2\text{H}_2\text{O} + \text{O}_2 + 4e^- & \rightleftharpoons 4\text{OH}^- \quad (E^0 = 0.401V) \tag{5} \\
2\text{H}_2\text{O} & \rightleftharpoons 2\text{H}_2\text{O} + \text{O}_2 \tag{6} \\
2\text{H}^+ + 2e^- & \rightleftharpoons \text{H}_2 \quad (E^0 = 0.0V) \tag{7}
\end{align*}

The use of carbon materials for the electrochemical \(\text{H}_2\text{O}_2 \) generation was patented in 1931 \[14\] and nowadays most electrodes for electrochemical synthesis are still based on carbon. It enables the two-electron reaction step, is inexpensive and offers sufficient chemical and thermal stability.

1Thorben Muddemann, Ulrich Kunz
muddemann@icvt.tu-clausthal.de
Clausthal University of Technology, Institute of Chemical and Electrochemical Process Engineering, Leibnizstraße 17, 38678 Clausthal-Zellerfeld, Germany.

2Dennis R. Haupt, Michael Sievers
Clausthal University of Technology, CUTEC Research Center for Environmental Technologies, Leibnizstraße 23, 38678 Clausthal-Zellerfeld, Germany.
Although carbon has been known as catalyst for nearly one century, the literature mostly focuses on the screening of novel catalysts and combinations [17–20] instead of further optimizing carbon systems through design and operation parameters [21, 22]. Until today, only few studies have examined the influence of the operating parameters of H$_2$O$_2$-generating GDE performance according to Tab. S1 and the detailed comparison of published studies given in the Supporting Information.

Even if there is consensus in the literature that higher temperatures promote the self-decomposition of H$_2$O$_2$, there is dissent regarding the influence of the pH value, the electrolyte and gaseous flow rates. Furthermore, the impact of the differential pressure of the gas across the GDE has not been evaluated yet.

Therefore, this contribution investigates the impact of numerous process parameters including the differential pressure of gas on the H$_2$O$_2$ yield of GDEs. In order to ensure a proper relation of the measured differences in yield to defined operating conditions, the experimental parameter study is investigated at steady state for the first time.

2 Experimental

2.1 Electrodes

The investigated H$_2$O$_2$-GDE was developed in cooperation with Covestro AG (Germany) as part of the publicly funded project RADAR [23]. This electrode is already available in technical relevant scales (up to 2.7 m2). The GDE is a pure carbon electrode (no additional catalyst) consisting of Vulcan XC72 carbon black (60%; Cabot Corp., USA) and PTFE TF2053Z (40%, Dyneon GmbH, Germany) on gold-plated nickel wire cloth (Haver & Bo¨cker OHG, Germany).

2.2 Laboratory Electrolysis and Cell Design

The electrolysis cell houses planar electrodes with a geometric area of 100 cm2 and is shown in simplified form with its material flows in Fig. 1. A Nafion N-438 (Fuel Cell Store, USA) cation exchange membrane separated the anodic compartment from the cathodic one and was placed on the anode in zero-gap arrangement. This anode was a dimensionally stable anode (DSA) based on an expanded metal Ti-electrode with IrO$_2$ coating (Magneto special anodes B.V., Netherlands) for the oxygen evolution reaction (OER; Eq. (8) and (9)).

$$\text{H}_2\text{O} \rightarrow 0.5\text{O}_2 + 2\text{H}^+ + 2\text{e}^- \quad (E^0 = 1.229\text{V}) \quad (8)$$

$$2\text{OH}^- \rightarrow 0.5\text{O}_2 + \text{H}_2\text{O} + 2\text{e}^- \quad (E^0 = 0.401\text{V}) \quad (9)$$

The distance between membrane and GDE was 3 mm. The reaction system reveals an alkalization of the catholyte (proton consumption or hydroxyl ion generation) and an acidification of the anolyte (proton generation or hydroxyl ion consumption). To compensate this pH shift and to achieve steady-state conditions, the system included dosings and overflows at the anodic and cathodic side.

To reach steady-state operation, the electrolysis system was controlled by an embedded system (National Instruments cRio, USA). The GDE backpressure was adjusted by leading the excess oxygen/air from the cathodic side in a water column. The differential pressure was measured directly through a pressure transmitter at the gas outlet of the cell. All experiments were operated in galvanostatic mode. Electrode potentials were measured through Luggin capillaries and reversible hydrogen electrodes (RHE, Gaskatel GmbH, Germany) at two different geometrical points. The electrolytes (anolyte and catholyte each 1 L) were pumped by centrifugal pumps (type MPN 80 and MPN 101, Schmitt GmbH, Germany) and the dosing for steady state was carried out by membrane pumps (Simdos 02, KNF GmbH, Germany). The temperature of the entire system was kept constant by several double-tube heat exchangers (self-made) and a cooling circulator (Huber ministat 230, Germany).

2.3 Analytical Methods

Mass balances were used to determine current efficiencies at steady state. Therefore, the mass flow of dosings, overflows and its concentrations were measured over a defined period. H$_2$O$_2$ concentrations were determined by iodometry [24] and the H$_2$O$_2$ current efficiencies were calculated by Eq. (10):

$$C.E. = \frac{z F w_{\text{H}_2\text{O}_2} \Delta (\bar{m}_{\text{start/end}})}{M_{\text{H}_2\text{O}_2} j A} \cdot 100 \quad (10)$$
With \(z \) as the stoichiometric number of transferred electrons (2), \(F \) as Faraday constant (96 485.33 C mol\(^{-1}\)), \(w_{\text{H}_2\text{O}_2} \) (g g\(^{-1}\)) as \(\text{H}_2\text{O}_2 \) concentration, \(\Delta \text{m}_{\text{start/end}} \) (g s\(^{-1}\)) as the catholyte overflow rate, \(M_{\text{H}_2\text{O}_2} \) (g mol\(^{-1}\)) as molar mass of \(\text{H}_2\text{O}_2 \), \(f \) (kA m\(^{-2}\)) for the current density and \(A \) (m\(^2\)) for the geometric electrode area. The hydroxyl ion/proton concentrations were determined via acid-base titration. To determine reliable yields including error estimation, each analysis was carried out three times to determine the average value and its standard deviation of the current yield.

2.4 Chemicals

The GDEs were operated with oxygen (3.5 N, Linde AG, Germany) and synthetic air (20 % \(\text{O}_2 \) and 80 % \(\text{N}_2 \)). Deionized water (behrpure, Behr Labor-Technik GmbH, Germany), caustic soda (No. 9356.2, Carl Roth GmbH + Co. KG, Germany), sodium sulfate (No. 0966.2, Roth) and sulphuric acid (No. 9316.2, Roth) were used for preparation of the electrolytes. The chemicals for the titration were purchased from Roth: sodium thiosulfate solution (No. K022.1), ammonium heptamolybdate tetrahydrate (No. 7311.1) and potassium iodide (No. 6750.3).

3 Results and Discussion: Influence of the Process Parameters on \(\text{H}_2\text{O}_2 \) Current Efficiency

The results of the successive process parameter variation are presented below. Since the investigated GDE should be used in wastewater treatment, higher current densities are favorable, and the lowest relevant current density was set to 0.5 kA m\(^{-2}\).

3.1 Temperature Influence

To investigate the influence of temperature, the dosing of the laboratory system was adjusted to achieve a concentration of 1 M NaOH in the anolyte and catholyte. For this purpose, both circuits were filled with 1 M NaOH at startup of the plant and 1.5 M NaOH was added to the anolyte (approx. 319 g h\(^{-1}\)) and demineralized water to the catholyte (approx. 171 g h\(^{-1}\)) during electrolysis. The current density was set to 0.5 kA m\(^{-2}\) with an oxygen stoichiometric factor of 3.6 and a gaseous pressure difference of 35 mbar. This resulted in a NaOH concentration in the catholyte of 0.979 ± 0.019 M after reaching steady-state condition. The influence of the temperature is shown in Fig. 2, indicating that lower temperatures lead to higher cell voltages due to lower conductivities, but also to the highest yields. Current efficiencies for \(\text{H}_2\text{O}_2 \) production of greater 90 % were measured at 15–17°C with following process parameters: An oxygen stoichiometric factor of 3.6, a differential pressure of 35 mbar and an electrolyte flow rate of 33 L h\(^{-1}\) (turbulent flow regime). At higher temperatures, a decrease in \(\text{H}_2\text{O}_2 \) yield was found by lower \(\text{H}_2\text{O}_2 \) concentrations measured in the overflow outlet of the system, starting from 15°C (1.541 ± 0.034 wt %), to 20°C (1.437 ± 0.005 wt %), 25°C (1.207 ± 0.028 wt %), 30°C (1.038 ± 0.029 wt %), 40°C (0.985 ± 0.025 wt %) and 50°C (0.637 ± 0.032 wt %).

The determined current yield for hydroxide ions, which are formed in the alkaline environment as a by-product of the \(\text{H}_2\text{O}_2 \) formation, indicate current efficiencies of greater than 90 % for all experiments. It is probable that \(\text{H}_2\text{O}_2 \) was formed with higher yields even at high temperatures but due to an expected increase of reactivity and self-accelerated decomposition rate at higher temperatures this could not be measured in the experiments. During the experiments with an electrolyte temperature of 50°C, the electrolyte penetrates through the GDE. Due to the decreasing electrolyte viscosity, a differential pressure of 35 mbar in the gas compartment was no longer sufficient to prevent electrolyte penetration. Up to 40°C the GDE was operated satisfactorily.

In all experiments, the potential measurements show differences between the two measuring points of up to 40 mV. The large electrode surface area and broad pore size distribution lead to locally different electrode characteristics. Furthermore, oxygen bubbles can be forced through the electrode and cause potential jumps during detachment, which are reflected in the standard deviations. Such observations have already been published for other carbon-based systems [25]. Therefore, besides the local potentials, the integral cell voltage is an important value for electrode performance screening.
3.2 Influence of pH Value

To evaluate the influence of the pH value on the H$_2$O$_2$ yield, the dosage mass flow rate of all liquids was kept constant, but the pH value of the added solution (to the catholyte) was varied. Demineralized water was used as dosing agent for the experiment at pH 14 and the catholyte dosing was adjusted to more acidic level (H$_2$SO$_4$) for the other operating points.

The investigations show that H$_2$O$_2$ has the highest stability at pH 14 and the yield drops rapidly and almost in linear proportion with decreasing pH (Fig. 3). The yield decreased from initially approx. 95% at pH 14 to 19.3% at pH 1. The concentration of the H$_2$O$_2$ solution changed from 1.6 wt % (pH 14) to 0.34 wt % (pH 1). These yield losses are also due to increasing chemical potentials and reactivity and, thus, self-decomposition of H$_2$O$_2$ with decreasing pH value. In alkaline solutions H$_2$O$_2$ predominantly exists as HO$_2^-$ and inhibits the self-decomposition at higher pH values [26].

For an in situ wastewater treatment, an acidic pH value adjustment is sometimes used (e.g., for Fenton reaction), but an electrochemical H$_2$O$_2$ generator based on carbon GDE should be operated in the alkaline pH range. The combined formation of H$_2$O$_2$ and OH$^-$ at alkaline condition is described as negative property in comparison to the stand-alone H$_2$O$_2$ formation in acidic condition in literature (Eq. (1)) [27]. However, the test series show that this is an ideal combination since the stabilizing agent is generated in situ at the same reaction step. This result is beneficial since different industrial process waters as well as wastewater streams are highly alkaline [28] and, e.g., H$_2$O$_2$ is preferably used in combination with sodium hydroxide in the pulp and paper industry [29].

3.3 Influence of the Flow Regime

A turbulent flow occurs in a plane gap within an electrochemical reactor at Reynolds (Re) numbers of greater 2200 to 3600 [30]. In order to investigate the influence of the flow regime, the H$_2$O$_2$ yield was determined at 20 L h$^{-1}$ and 33 L h$^{-1}$, each at different temperatures, but on the same steady-state operation as described above. The Re numbers were calculated according to [30] to 1626 (15$^\circ$C), 1845 (20$^\circ$C) and 1991 (30$^\circ$C) for the test series with the laminar catholytic volume flow rate of 20 L h$^{-1}$ and to 2683 (15$^\circ$C), 3043 (20$^\circ$C) and 3286 (30$^\circ$C) for the turbulent flow at 33 L h$^{-1}$. The anolyte volume flow rate was set at 60 L h$^{-1}$ in all experiments.

The influence of the catholyte flow regime on the H$_2$O$_2$ yield is given in Fig. 4. Both the laminar flow (20 L h$^{-1}$) and the turbulent flow (33 L h$^{-1}$) show similar results in the considered operating area (1 M NaOH, 0.5 kA m$^{-2}$) and no significant difference in yield as well as cell voltages can be determined at all temperatures. It should be noted that laminar flow led to higher fluctuations in the H$_2$O$_2$ concentration measurement due to a more inhomogeneous mixing at a lower electrode overflow velocity.

For an in situ wastewater treatment, an acidic pH value adjustment is sometimes used (e.g., for Fenton reaction), but an electrochemical H$_2$O$_2$ generator based on carbon GDE should be operated in the alkaline pH range. The combined formation of H$_2$O$_2$ and OH$^-$ at alkaline condition is described as negative property in comparison to the stand-alone H$_2$O$_2$ formation in acidic condition in literature (Eq. (1)) [27]. However, the test series show that this is an ideal combination since the stabilizing agent is generated in situ at the same reaction step. This result is beneficial since different industrial process waters as well as wastewater streams are highly alkaline [28] and, e.g., H$_2$O$_2$ is preferably used in combination with sodium hydroxide in the pulp and paper industry [29].
is reduced. By increasing the pressure from 35 mbar to 55 mbar, more than 70 mV in cell voltage is savable. As a pressure above 60 mbar leads to gas breakthrough from the gas side to the electrolyte side of the GDE, a differential pressure of 55 mbar is recommended for future investigations with this electrode.

3.5 Oxygen Stoichiometric Factor, Air and Separator Material

For economical wastewater treatment, water reuse and water disinfection, a cost-effective H₂O₂ generation is necessary to support economic applications. Therefore, the influence of oxygen stoichiometric factor and the use of air instead of pure oxygen (technical grade) were investigated. Furthermore, the operation with a diaphragm (Zirfon, Agfa-Gevaert N.V., Belgium) as a more cost-effective separator material was compared to the Nafion N-438 cation exchange membrane (CEM), as given in Fig. 6. The operation with an oxygen stoichiometric factor of 1.8 and 3.6 did not show any significant differences regarding the cell voltage (see “CEM; 1.8nO₂; 50 mbar” vs. “CEM; 3.6nO₂; 50 mbar”) or only a small difference in H₂O₂ yield (90.09 % ± 0.68 % in comparison to 93.17 % ± 0.42 %). In contrast to this, an operation with air instead of technical O₂ (see “CEM; 3.6nO₂; 35 mbar” to “CEM; 3.6nAir; 35 mbar”) led to an increased cell voltage of 540 mV caused by a lower cathode potential. Although the operation with air led to an increased voltage, the efficiency remains constant considering the error bars.

An operation with the CEM led to high yields and excellent separation of anolyte and catholyte without a H₂O₂ crossover flow, because H₂O₂ was not detected in the anolyte. Zirfon was selected as an alternative separator material for cheaper operation (see “CEM; 3.6nO₂; 35 mbar” vs. “Zirfon; 3.6nO₂; 35 mbar”), but it led to a drastic efficiency decrease (30–40 %) and the yield dropped to 48.86 % ± 0.53 % (61.06 % incl. H₂O₂ in the anolyte) in combination with an increasing cell voltage of 650 mV. The unspecific ion/molecule separation of a diaphragm like Zirfon is not beneficial for this application.

3.6 Influence of Current Density

Fig. 7 illustrates the influence of the current density on the H₂O₂ yield. The volume flow rates of liquid dosings (and overflows) were controlled in relation of the current to reach steady state with 1 M NaOH despite the higher faradaic formation rates at higher current densities. This

![Figure 5. Influence of the differential pressure (dp) on H₂O₂ current efficiency, cell voltage and potentials at 0.5 kA m⁻² and 1 M NaOH.](image)

![Figure 6. Influence of oxygen stoichiometric ratio (nO₂), air and the separator material on the H₂O₂ current efficiency. Cell voltage and potentials at 0.5 kA m⁻², oxygen stoichiometric factor (nO₂) and differential pressure (dp) are specified in the legend.](image)

![Figure 7. Influence of current density to the H₂O₂ current efficiency, cell voltage and potentials at 1 M NaOH, 15 °C and a differential pressure of 35 mbar at an oxygen stoichiometric factor of 3.6.](image)
enables a suitable comparison through identical pH values even across different current densities.

The data indicate that yields of more than 90% were also reached in the higher current density range of up to 2 kA m⁻². Due to the high cathodic potential at 2 kA m⁻², the operation at 3 kA m⁻² and 4 kA m⁻² was also investigated. Both current densities led to lower efficiencies and an electrolyte breakthrough through the GDE occurred during each experiment. Due to strong potential fluctuations through the electrolyte breakthrough, the potentials of these operating points are omitted. After disassembling the test cell, a partially swollen electrode material was visible in both cases.

The GDEs of the 3 kA m⁻² and 4 kA m⁻² test series and the intact one after the 0.5 kA m⁻² experiment were examined by SEM images. Fig. 8-1 shows the cross section of an intact H₂O₂-GDE, including its nickel wire cloth. Fig. 8-2 shows such a transition from an almost intact GDE surface of the 4 kA m⁻² GDE (left) to a swollen surface (right). For further illustration, the swollen state of the GDE after 3 kA m⁻² is shown in Fig. 8-3 and after 4 kA m⁻² in Fig. 8-4. The swelling is probably caused by oxygen evolution through H₂O₂ decomposition, which might occur at the higher current densities through mass transfer limitation of the product at the inner electrode or through hydrogen evolution. Swelling and cracking occurrence increase strongly through the H₂O₂ generation rates at current densities above 2 kA m⁻². Nevertheless, the investigated H₂O₂-GDE was stable up to 2 kA m⁻² and clearly surpasses most of the GDEs mentioned in the literature.

4 Conclusions

A process parameter study was performed to optimize the efficiency of H₂O₂-generating gas diffusion electrodes. This study includes the process parameters temperature, pH value, oxygen pressure and oxygen stoichiometric factor, electrolyte flow regime, current density and separator material. A laboratory reactor was operated at steady-state conditions for a fair and accurate comparison and evaluation of process parameters. This approach was selected due to the contradictory results reported in literature, mainly caused by changing pH values.

Figure 8. SEM images of the H₂O₂-GDE after different current density loadings: an intact GDE surface after 2 kA m⁻² current load (1), defective GDE surface after 3 kA m⁻² (3) and after 4 kA m⁻² load (2 and 4).
The investigations clearly show that especially higher temperatures and lower pH values decrease the H₂O₂ yield probably due to H₂O₂ decomposition. The present carbon-based GDE enables current yields greater than 90% at 15°C and pH 14 at 0.5 kA m⁻² up to 2 kA m⁻². The combined formation of H₂O₂ and OH⁻ in the alkaline environment is an ideal combination since the stabilizing agent is generated simultaneously, which is a great advantage of electrochemical H₂O₂ formation. While the temperature and pH value of the electrolyte have a significant influence on the H₂O₂ yield, no significant difference is observed between laminar and turbulent electrolyte flow regimes.

Furthermore, the cell voltage can be reduced by selecting a decent oxygen pressure difference in the gas compartment. A differential pressure slightly lower than the gas breakthrough pressure of the GDE resulted in a cell voltage reduction of more than 70 mV. In contrast, the operation with 1.8-fold or 3.6-fold oxygen stoichiometric factor did not show a significant difference in the cell voltage. Therefore, an operation with 1.8-fold oxygen is recommended. With the present GDE, an operation with air as gas is also possible, because similar H₂O₂ yields are found compared to the operation with technical grade oxygen. However, it led to an increase in cell voltage and, therefore, more electric power generation is necessary.

The investigations show that pure carbon-based GDEs enable high yields of H₂O₂ above 90% current efficiency in alkaline medium.

A H₂O₂ concentration of 1.6 wt% at a production rate of 1.86 mol h⁻¹ m⁻² A⁻¹ can be reached. In addition, the impact of process parameters on the efficiency of the electrolysis should generally receive more attention due to their possibly more important influence compared to catalyst type and composition.

Supporting Information

Supporting Information for this article can be found under DOI: https://doi.org/10.1002/cite.201900137. This section includes additional references to primary literature relevant for this research [31–39].

The authors thank Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung), BMBF, Germany, for funding this study (contract number 03XP0107). Many thanks also to Covestro AG for providing the GDEs.

Symbols used

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>area</td>
<td>m²</td>
</tr>
<tr>
<td>C.E.</td>
<td>current efficiency</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>Faraday constant</td>
<td>C mol⁻¹</td>
</tr>
</tbody>
</table>